The subtle mechanics of an avalanche as seen in 3-D

August 3, 2018 by Sarah Perrin, Ecole Polytechnique Federale de Lausanne
The subtle mechanics of an avalanche as seen in 3D
Johan Gaume, avalanche expert at EPFL and SLF. Credit: A.Herzog/EPFL

Drawing on the fact that the snow in an avalanche can behave like both a solid and a fluid, a young researcher at EPFL and SLF has managed to simulate a snow slab avalanche with unrivaled precision.

An is an extremely complex event, with countless parameters and physical variables coming into play from the time the avalanche is triggered until it ends. Johan Gaume, a researcher in the Laboratory of Cryospheric Sciences (CRYOS) and SLF, has created a highly accurate digital simulation of an avalanche based on these parameters. His work, which offers unprecedented insight into how avalanches work, could be used to improve risk management in the mountains. It was published today in Nature Communications.

The young avalanche expert spent several months last year at the University of California Los Angeles (UCLA) working with 3-D modeling experts, some of whom had worked with Disney's engineers to simulate the snow in the film Frozen.

Combining these mathematicians' know-how with Gaume's scientific expertise turned out to be a winning formula. The mathematicians were able to increase the accuracy of their snow simulation thanks to Gaume's in-depth knowledge and the data and field observations collected and analyzed by Alec Van Herwijnen, Gaume's SLF colleague and co-author of the study.

Adopting a whole new approach, the Swiss and US researchers created the first realistic, complete and scientifically rigorous simulation of a snow slab avalanche – a type of avalanche that occurs when a very clear linear crack appears at the top of the snowpack. This usually happens when, over a large area, there is a weak – and therefore not very cohesive – snowpack layer under the dense top layer of snow, known as the slab. Snow slab avalanches are hard to predict and often triggered by skiers or walkers, making them the most dangerous and the mostly deadly type of avalanche.

Double agent

"What made our approach so original was that we took account of the fact that the snow in that type of avalanche behaves like both a solid and a fluid," explains Gaume.

A snow slab avalanche is usually triggered when there is an extra load – such as a crossing skier – on the snow, or when the snowpack is destabilized in some other way, for instance by an explosion. This causes a crack to appear in the bottom layer of snow, which can spread rapidly. At this point, the snow is behaving in accordance with the principles of solid mechanics. As the crack spreads, the weak layer's porous structure causes it to collapse under the weight of the surface slab. Because of its mass and the slope, the slab is then released and begins to slide across the weaker layer. The collisions, frictions and fractures that the solid snow experiences as the top layer slides downward and breaks apart lead to a collective behavior characteristic of a fluid.

The researchers were able to simulate the collapse of the porous bottom layer for the first time at a large scale using a continuum approach. In addition, the model integrates only the relatively few key parameters that dictate how the snow will behave at the various stages of the process; these include the dynamics of the fracture, friction, and the level of compaction based on the type of snow.

The researchers borrowed a technique known as the material point method, which is used to analyze how moving materials behave yet had never before been applied in the study of avalanche release. It underpinned the researchers' novel approach to predicting avalanches – and therefore preventing them more effectively as well. "In addition to deepening our knowledge of how behaves, this project could make it possible to assess the potential size of an avalanche, the runout distance and the pressure on any obstacles in the avalanche's path more accurately," says Gaume.

The researcher's simulations could also be applied in the arts – and especially in animated films.

Explore further: Towards better forecasts of slab avalanches

More information: J. Gaume et al. Dynamic anticrack propagation in snow, Nature Communications (2018). DOI: 10.1038/s41467-018-05181-w

Related Stories

Towards better forecasts of slab avalanches

January 31, 2017

A team of researchers from EPFL and the SLF has developed a new model that describes how slab avalanches release. In the long run, it will allow improving avalanche forecasting.

Avalanches, a mountain menace

January 20, 2017

Avalanches such as the one that smashed into a hotel in central Italy on Wednesday are complex phenomena triggered by a combination of local factors.

Avalanches -- triggered from the valley

December 2, 2008

Everybody knows that skiers swishing down steep slopes can cause extensive slab avalanches. But there is a less well known phenomenon: A person skiing a gentle slope in the valley triggers a slab avalanche on a steeper slope, ...

Subzero learning environment enabling avalanche research

April 12, 2015

A recent article about avalanche research in Popular Science referred to the effort toward knowing more about the avalanche in its subhead as "snowslide science," and the article was about the interesting lab work going on ...

An earthquake or a snow avalanche has its own shape

December 20, 2013

Predicting earthquakes or snow avalanches is difficult, but to for instance reduce the related risks it is of high importance to know if an avalanche event is big or small. Researchers from Aalto University in Finland have, ...

New sensor—what goes on inside snow avalanches

November 30, 2016

A new radar sensor grants insights into the processes inside snow avalanches. It was developed by a team of engineers at Ruhr-Universität Bochum (RUB) headed by Dr Christoph Baer and Timo Jaeschke, in collaboration with ...

Recommended for you

Greenland ice loss quickening

December 7, 2018

Using a 25-year record of ESA satellite data, recent research shows that the pace at which Greenland is losing ice is getting faster.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.