Researchers investigate stellar populations in the central region of the Andromeda galaxy

August 6, 2018 by Tomasz Nowakowski, Phys.org report
The Andromeda galaxy. Credit: Adam Evans.

German astronomers have conducted a study of the central bulge of the Andromeda galaxy and analyzed its stellar populations. The research could improve our understanding of the bulge's structure and formation history. Results of the study are presented in a paper published July 24 on the arXiv pre-print repository.

Located some 2.5 million light years away from the Earth, the barred spiral Andromeda galaxy, also known as Messier 31, or M31 for short, is the nearest major galaxy to the Milky Way. Due to its proximity, M31 is an excellent target to study the detailed evolutionary history of large spiral .

Andromeda's central bulge is crucial for such studies, so recently, a team of researchers from Germany led by Roberto Philip Saglia of the Max Planck Institute for Extraterrestrial Physics in Garching, decided to analyze the stellar populations of this region in detail.

For their research, the team used the 2.7 meter telescope at the McDonald Observatory in Texas to obtain spectroscopic data of M31. The observational campaign allowed the astronomers to uncover simple stellar population properties of the central region of this galaxy, including age, metallicity and alpha-elements abundance.

"We observed M31 for 14 nights with the integral-field spectrograph VIRUS-W attached to the 2.7m telescope at the McDonald Observatory, Texas, covering the bulge area with a filling factor of 1/3 and sampling the disk along six different directions, reaching approximately one scalelength along the major axis," the scientists wrote in the paper.

According to the study, the stellar populations in the central region of M31 are fairly old—more than 10 billion years old. In comparison, the stars of the galaxy's disk are younger by 5 to 6 billion years.

In particular, the researchers found that the central 100 arcsec of this galaxy is dominated by old, metal-rich stars at the center with a negative gradient outwards and enhanced in alpha elements.

The study reveals that M31's bulge as well as bar have solar metallicities. The team also found that the bar and bulge have a mean age of 10 and 13 billion years respectively.

The authors of the paper concluded that their result suggest a two-phase formation scenario for the inner region of M31.

"A classical stellar bulge forms together with a primordial disk, from a quasi-monolithic collapse or violent instability of the turbulent inner proto-disk. On larger scales, the proto-disk develops a bar. The bar buckles and transforms the proto-disk into the boxy-peanut B/P . The stars in this region are mainly old," the researchers concluded.

The team plans further studies of M31 that might shed further light on the sequence of events that built the central regions of this galaxy. Moreover, they will try to calculate the rate of microlensing events expected from the self-lensing of the different populations of the central of the Andromeda galaxy.

Explore further: Groundbreaking study sheds new light on galaxy evolution

More information: The stellar populations of the central region of M31, arXiv:1807.09284 [astro-ph.GA] arxiv.org/abs/1807.09284

Abstract
We continue the analysis of the dataset of our spectroscopic observation campaign of M31, by deriving simple stellar population properties (age metallicity and alpha-elements overabundance) from the measurement of Lick/IDS absorption line indices. We describe their two-dimensional maps taking into account the dust distribution in M31. 80% of the values of our age measurements are larger than 10 Gyr. The central 100 arcsec of M31 are dominated by the stars of the classical bulge of M31. They are old (11-13 Gyr), metal-rich (as high as [Z/H]~0.35 dex) at the center with a negative gradient outwards and enhanced in alpha-elements ([alpha/Fe]~ 0.28+- 0.01 dex). The bar stands out in the metallicity map, where an almost solar value of [Z/H] (~0.02+-0.01 dex) with no gradient is observed along the bar position angle (55.7 deg) out to 600 arcsec from the center. In contrast, no signature of the bar is seen in the age and [alpha/Fe] maps, that are approximately axisymmetric, delivering a mean age and overabundance for the bar and the boxy-peanut bulge of 10-13 Gyr and 0.25-0.27 dex, respectively. The boxy/peanut-bulge has almost solar metallicity (-0.04+- 0.01 dex). The mass-to-light ratio of the three components is approximately constant at M/LV ~ 4.4-4.7 Msol/Lsol. The disk component at larger distances is made of a mixture of stars, as young as 3-4 Gyr, with solar metallicity and smaller M/LV (~3+-0.1 Msol/Lsol). We propose a two-phase formation scenario for the inner region of M31, where most of the stars of the classical bulge come into place together with a proto-disk, where a bar develops and quickly transforms it into a boxy-peanut bulge. Star formation continues in the bulge region, producing stars younger than 10 Gyr, in particular along the bar, enhancing its metallicity. The disk component appears to build up on longer time-scales.

Related Stories

Groundbreaking study sheds new light on galaxy evolution

July 9, 2018

Using integral field spectroscopy (IFS) and advanced modeling tools, Instituto de Astrofísica e Ciências do Espaço (IA) researchers Iris Breda and Polychronis Papaderos have achieved an important milestone towards solving ...

Hubble sights galaxy stuck in the middle

April 30, 2018

This pretty, cloud-like object may not look much like a galaxy—it lacks the well-defined arms of a spiral galaxy, or the reddish bulge of an elliptical—but it is in fact something known as a lenticular galaxy. Lenticular ...

WISE reveals the X-shaped bulge of our galaxy

March 3, 2016

Using a set of coadded images taken by NASA's Wide-field Infrared Survey Explorer (WISE), astronomers from the Max Planck Institute for Astronomy in Germany and the University of Toronto in Canada, have provided new insights ...

First age-map of the heart of the Milky Way

April 2, 2018

The first large-scale age-map of the Milky Way shows that a period of star formation lasting around 4 billion years created the complex structure at the heart of our galaxy. The results will be presented by Marina Rejkuba ...

Starry surprise in the bulge: encounter of a halo passerby

July 22, 2015

A team led by Andrea Kunder from the Leibniz Institute for Astrophysics Potsdam (AIP) measured the velocity of a sample of 100 old RR Lyrae stars thought to reside in the Galactic bulge, the central group of stars found in ...

Recommended for you

Student discovers slowest ever pulsar star

October 23, 2018

An approximately 14 million year old pulsar star that is the "slowest-spinning" of its kind ever identified has been discovered by a Ph.D. student from The University of Manchester.

NASA's First Image of Mars from a CubeSat

October 23, 2018

NASA's MarCO mission was designed to find out if briefcase-sized spacecraft called CubeSats could survive the journey to deep space. Now, MarCO—which stands for Mars Cube One—has Mars in sight.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.