Screw pine is a self-watering giant

August 27, 2018 by Matthew Biddick, The Conversation
To grow tall enough to reach the canopy, a species of screw pine unique to Lord Howe Island has evolved its own rainwater harvesting system. Credit: Matthew Biddick, CC BY-SA

Pandanus forsteri, a species of screw pine endemic to Lord Howe Island, grows tall like no other tree on Earth. To reach the canopy, these trees have evolved a rainwater harvesting system that enables them to water themselves.

Originally from Micronesia, the palm-like P. forsteri belongs to a group of trees that have populated almost every coastal habitat of the Pacific. In fact, pandans are used by Oceanic cultures for everything from fishing and cooking to medicine and religious ceremonies.

Our research shows that pandans differ in several fundamental ways from more familiar trees, including how they capture water and grow.

Reaching for the canopy

Most trees lay down concentric rings of as they mature, thickening over time. This enables them to grow tall, yet maintain enough structural integrity to avoid toppling over. It is also arguably the most important evolutionary innovation that has enabled trees to colonise most of terrestrial Earth.

Together with palms, bamboo and yucca, pandans belong to a group known as monocots, because their seedlings produce a single embryonic leaf.

Their vascular tissue is not compartmentalised in the same way. It forms bundles that are positioned somewhat haphazardly within the stem. Consequently, monocots are unable to produce true secondary growth and thicken like other trees do – and reaching the canopy becomes a much more ambitious endeavour.

The canopy offers a good life. The sun is shining, seed-dispersing birds are abundant, and the herbivores of the forest floor are a distant concern. In monocots, natural selection has favoured some inventive ways of stretching to the top.

Pay-as-you-go growth

Palms overcome the limitations imposed by their physiology by spending their younger years laying down enough vascular girth to support their future stature. Think of it like putting aside money for your retirement. You may not need it now, but you will likely later depend on it.

Once thick enough, palms shift their efforts to vertical growth. The palm's tactic of delayed vertical growth may be slow, but it functions well enough to thrust Columbian wax palms (Ceroxylon quindiuense) – the world's tallest monocot – 45 meters into the clouds.

Pandans, on the other hand, are less patient. Unlike palms, they prefer a sort of "pay-as-you-go" method. They produce stilt roots that extend from the trunk to the ground for support as the crown matures. The end result gives the appearance of an ice cream cone perched on a tepee of stilts. It's an odd strategy, but it works.

However, on Lord Howe Island, something quite remarkable has transpired. Isolated some 600 kilometres off the east coast of Australia, one species of screw pine has evolved into an island giant.

Pandans belong to a group of plants whose vascular tissue is still primitive, making it difficult to grow tall. Credit: Ian Hutton, CC BY-SA

Island syndrome

Most screw pines are lucky to reach four or five meters. Pandanus forsteri trees, however, regularly exceed 15 meters. These kinds of size changes are not uncommon on isolated islands. They are part of a repeated evolutionary phenomenon known as the island syndrome.

Species on isolated islands are free from the stressors of continental life, and they subsequently converge on a more optimal, ancestral form. Large continental species evolve into island dwarfs, while smaller species become comparatively gigantic. Support for the island syndrome primarily comes from animals. However, a growing body of evidence suggests island plants follow a similar evolutionary path.

While gigantism may be favourable, it doesn't come without risks – and for P. forsteri, they are serious. Thanks to their new-found stature, P. forsteri trees must produce enormous stilt roots to support themselves. This process that can take years. Exposed to the air, roots can form air bubbles, and an air bubble in a plant is bad in the same way it is bad in your artery. It is potentially lethal.

Nature appears to have solved this problem through the evolution of a system that enables P. forsteri to water its own stilt roots before they reach the ground.

Gutter-like leaves collect rainwater and transport it to the trunk, where it descends. The flow of water is then couriered by a network of aqueducts formed by the root surface. Finally, water is stored in a specialised organ of absorptive tissue encasing the growing root tip.

Lord Howe Island, some 600km off the Australian east coast, is home to countless endemic plants and animals. Credit: Ian Hutton, CC BY-SA

Back to the drawing board

This is dramatically different from how we traditionally think about plants. It is far from our concept of sessile beings that passively absorb everything they need from the soil, thanks to the capillary action of their vascular tissues. Never before has a plant species been shown to possess a system of traits that operate jointly to capture, transport and store water external to itself.

This species has opened our eyes to an entirely new field of scientific inquiry. It forces scientists to rethink the function of organs like leaves and roots outside of the contexts of photosynthesis and the conduction of soil water.

Do other plants harvest rainwater in this way? Why have we only just discovered this? Has our overly simplistic view of plants hindered our ability to comprehend their true complexity? Only time, and more research, will tell.

Explore further: Researchers unravel the age of fine tree roots

Related Stories

Researchers unravel the age of fine tree roots

August 17, 2018

The researchers at the Swiss Federal Research Institute WSL used thin sections of roots less than two millimetres thick to identify the tree rings of several hundred spruce (Picea abies), pine (Pinus sylvestris), beech (Fagus ...

Downed trees not necessarily a lost cause

September 19, 2017

Among the devastation wrought by Hurricane Irma last week, many downed trees and uprooted plants were left in the storm's wake. Those in a rush to get things back to normal have been quick to break out the chainsaws and remove ...

Deep roots in plants driven by soil hydrology

September 18, 2017

Searching for water, some tree roots probe hundreds of feet deep and many trees send roots through cracks in rocks, according to a new study led by a Rutgers University-New Brunswick professor.

Treetop leaves of tall trees store extra water

November 2, 2015

A research team led by Associate Professor Ishii Roaki and Doctoral Student Azuma Wakana from the Kobe University Graduate School of Agricultural Science has discovered that the water storage tissue that they recently found ...

Recommended for you

How quinoa plants shed excess salt and thrive in saline soils

September 21, 2018

Barely heard of a couple of years ago, quinoa today is common on European supermarket shelves. The hardy plant thrives even in saline soils. Researchers from the University of Würzburg have now determined how the plant gets ...

Decoding the structure of an RNA-based CRISPR system

September 20, 2018

Over the past several years, CRISPR-Cas9 has moved beyond the lab bench and into the public zeitgeist. This gene-editing tool CRISPR-Cas9 holds promise for correcting defects inside individual cells and potentially healing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.