Researchers generate optical skyrmions

July 27, 2018 by Kevin Hattori, Technion - Israel Institute of Technology
Credit: Petr Kratochvil/public domain

Technion-Israel institute of Technology researchers have succeeded in generating minute "nano-hedgehogs of light" called optical skyrmions, which could make possible revolutionary advances in information processing, transfer and storage.

The research, published recently in Science, was led by Professor Guy Bartal of the Viterbi Department of Electrical Engineering and Professor Netanel Lindner of the Physics Department at the Technion. The research team also included Professor Bergin Gjonaj of the Albanian University Faculty of Medicine in Tirana; as well as Shai Tsesses, Evgeni Ostrovsky and Kobi Cohen, all research students at the Technion.

The term "" is derived from the name of Dr. Tony Skyrme, an English physicist who, in 1962, discovered that high-energy arrangements of physical systems with fields that have a "hedgehog-like configuration" enjoy an enhanced stability. Over the years, the concept was applied to several material systems, most notably in magnets. Hedgehog arrangements are considered a highly promising alternative for data representation, which could drastically increase computer memory storage.

Currently, most of the world's information is inserted or extracted on hard drives via a mechanical arm. But information management based on skyrmions only requires weak electrical currents. And skyrmions are of nanoscale dimensions – with diameters 10,000 times smaller than that of a hair strand. Such features are why skyrmions are expected to dramatically optimize, speed up and reduce the costs of information processing, transfer and storage.

The Technion researchers were the first to extend Dr. Skyrme's idea to the world of optics: they managed to generate skyrmions using the electrical field of electromagnetic waves. In contrast to "regular" light waves, whose electrical fields usually point along a specific direction (a physical principle underlying, for example, polarized sunglasses), the Technion researchers demonstrated that an electric field can take on a "skyrmion" shape and simultaneously face in all directions, such that its spatial configuration looks like the quills of a hedgehog. In addition, they showed that these "light hedgehogs" are robust against various defects in the material hosting the electromagnetic waves.

Successful generation of skrymions in may be of critical importance in practical applications. To date, materials in which skrymions are formed are very rare and usually require cooling to very low temperatures, typically achieved with liquid nitrogen or helium. The new discovery by the Technion team could enable future replication of this unique effect in a wide range of systems and materials, including liquids, nanoparticle systems and even cold atomic gasses. It might also lay the ground for new skyrmion applications in optical (rather than magnetic) , transfer and storage.

Explore further: Meet the skyrmions—exotic quasiparticles could revolutionise computing

More information: S. Tsesses et al. Optical skyrmion lattice in evanescent electromagnetic fields, Science (2018). DOI: 10.1126/science.aau0227

Related Stories

Second skyrmion phase found in Cu2OSeO3

July 3, 2018

A team of researchers affiliated with several institutions in Germany has found a second skyrmion phase in a sample of Cu2OSeO3. In their paper published in the journal Nature Physics, the group describes how they found the ...

Researchers observe unique chiral magnetic phenomenon

June 29, 2018

Tiny magnetic vortex structures, so-called skyrmions, have been researched intensively for some time for future energy-efficient space-saving data storage devices. Scientists at Forschungszentrum Jülich have now discovered ...

Unlocking the potential of magnetic skyrmions

November 2, 2017

Magnetic skyrmions offer the promise of next-generation memory and computing technologies, such as cache memory devices and cloud computing. Now A*STAR researchers have developed an innovative technique for making tunable ...

Recommended for you

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.