Researchers establish new tool to study Cryptosporidium in healthy tissues

June 26, 2018, Washington State University
Lung organoid showing Cryptosporidium oocysts (green) and organoid cells (actin-red and dapi-nuclei-blue). Credit: Washington State University

Washington State University researchers have developed a new approach for studying Cryptosporidium, a waterborne gastrointestinal parasite now recognized as one of the leading causes of potentially life-threatening diarrheal disease in young children worldwide.

Published today in Nature Microbiology, Roberta O'Connor and Greg Bowden of the Department of Veterinary Microbiology and Pathology in WSU's College of Veterinary Medicine, in collaboration with Hans Clevers' group at the Hubrecht Institute in the Netherlands, announced their success in propagating Cryptosporidium in lung and intestinal organoids, mini-organs derived from human tissue biopsies and grown in 3-Dimensional structures in the lab. Organoids are, by far, the closest researchers can get to replicating the in-vivo architecture of human tissues.

In this study, researchers demonstrate for the first time that both lung and intestinal organoids will support the complete life cycle of Cryptosporidium, providing a near perfect mimic of actual human infection. The organoid system can now be used to dissect the parasite's interactions with normal host cells and ultimately microbiota and immune cells can be incorporated into the system. Most importantly, the organoid culture system provides a rigorous platform for the testing of drugs and identification of vaccine candidates.

"Cryptosporidium infections can result in life-threatening severe diarrhea, particularly in those with compromised immune systems such as AIDS patients, malnourished children, and the elderly; severely immunocompromised people can even develop respiratory cryptosporidiosis" stated O'Connor, Ph.D., an associate professor with the Veterinary Medicine Program. "With this tool we can now study this complex parasite without the former barriers and understand its lifecycle in healthy human tissues that will lead to new treatments or interventions."

Currently, there are no vaccines to prevent this disease and the only approved drug is ineffective and does not work in immunocompromised patients. Because advances in therapeutics and vaccines have been greatly hampered by the intractability of the parasite, especially the inability to culture the complete life cycle in the lab, the WSU researchers have prioritized developing new tools to study this parasite.

Explore further: Scientists find new cultivation system to battle parasite causing diarrhoea

More information: Inha Heo et al, Modelling Cryptosporidium infection in human small intestinal and lung organoids, Nature Microbiology (2018). DOI: 10.1038/s41564-018-0177-8

Related Stories

Breakthrough research turns the tide on water-borne pathogen

January 25, 2008

Cryptosporidium parvum is a tiny yet insidious waterborne parasite that wreaks havoc worldwide. This parasite is a major cause of diarrhea and malnutrition in small children in developing countries, and causes severe disease ...

Scientists use RFID chips to track biological samples

May 31, 2018

Radio frequency identification (RFID) chips are used today for everything from paying for public transit to tracking livestock to stopping shoplifters. But now, researchers in the U.S. and Japan want to use them for something ...

Recommended for you

How leaves talk to roots

September 26, 2018

New findings show that a micro RNA from the shoot keeps legume roots susceptible to symbiotic infection by downregulating a gene that would otherwise hinder root responses to symbiotic bacteria. These findings reveal what ...

Microbial dark matter dominates Earth's environments

September 26, 2018

Uncultured microbes—those whose characteristics have never been described because they have not yet been grown in a lab culture—could be dominating nearly all the environments on Earth except for the human body, according ...

Team names world's largest ever bird—Vorombe titan

September 25, 2018

After decades of conflicting evidence and numerous publications, scientists at international conservation charity ZSL's (Zoological Society of London) Institute of Zoology, have finally put the 'world's largest bird' debate ...

The grim, final days of a mother octopus

September 25, 2018

Octopuses are the undisputed darlings of the science internet, and for good reason. They're incredibly intelligent problem-solvers and devious escape artists with large, complex nervous systems. They have near-magical abilities ...

Climate change not main driver of amphibian decline

September 25, 2018

While a warming climate in recent decades may be a factor in the waning of some local populations of frogs, toads, newts and salamanders, it cannot explain the overall steep decline of amphibians, according to researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.