Repellent research: Navy developing ship coatings to reduce fuel, energy costs

June 21, 2018 by Warren Duffie, Office of Naval Research
Mathew Boban, a graduate student research assistant at the University of Michigan, pours hexadecane oil onto a glass slide covered with an omniphobic coating. The petroleum-based, highly viscous oil slides easily off the glass. The Office of Naval Research is sponsoring efforts to see how omniphobic coatings might reduce friction drag--resistance created by the movement of a hull through water--on ships, submarines and unmanned underwater vessels. Credit: Robert Coelius, Michigan Engineering Communications & Marketing

It can repel water, oil, alcohol and even peanut butter. And it might save the U.S. Navy millions of dollars in ship fuel costs, reduce the amount of energy that vessels consume and improve operational efficiency.

The Office of Naval Research (ONR) is sponsoring work by Dr. Anish Tuteja, an associate professor of materials science and engineering at the University of Michigan, to develop a new type of "omniphobic" coating. This chemical coating is clear, durable, can be applied to numerous surfaces and sheds just about any liquid.

Of particular interest to the Navy is how omniphobic coatings can reduce —resistance created by the movement of a hull through water—on ships, submarines and unmanned underwater vessels.

Compare friction drag to jogging through a swimming pool. Because of the water's resistance, each stride is more difficult and requires more energy and effort.

"A significant percentage of a ship's fuel consumption [up to 80 percent at lower speeds and 40-50 percent at higher speeds] goes toward maintaining its speed and overcoming friction drag," said Dr. Ki-Han Kim, a program officer in ONR's Sea Warfare and Weapons Department. "If we could find a way to drastically reduce friction drag, vessels would consume less fuel or battery power, and enjoy a greater range of operations."

Tuteja's omniphobic coating could be a solution. Picture two ships sailing at the same speed—one dealing with friction drag and the other covered in a coating that causes water to bead up and slide off the hull easily. The coated vessel theoretically would guzzle less fuel because it doesn't have to fight as much water resistance while maintaining speed.

While repellent coatings aren't new, it's hard to create one that resists most liquids and is tough enough to stick to various surfaces for long periods of time. Take a Teflon-coated pan, for example. Water will bead up and roll off the pan, while cooking oil will spread everywhere.

"Researchers may take a very durable polymer matrix and a very repellent filler and mix them," said Tuteja. "But this doesn't necessarily yield a durable, repellent coating. Different polymers and fillers have different miscibilities [the ability of two substances to mix together]. Simply combining the most durable individual constituents doesn't yield the most durable composite coating."

To engineer their innovative coating, Tuteja and his research team studied vast computer databases of known chemical substances. They then entered complex mathematical equations, based on each substance's molecular properties, to predict how any two would behave when blended. After analyzing hundreds of combinations, researchers found the right mix.

The molecular marriage was a hit during laboratory tests. The rubber-like combo can be sprayed, brushed, dipped or spin-coated onto numerous surfaces, and it binds tightly. The coating also can withstand scratching, denting and other hazards of daily use. And the way the molecules separate makes the coating optically clear.

Besides reducing friction drag, Tuteja envisions other Navy uses for the omniphobic coating—including protecting high-value equipment like sensors, radars and antennas from weather.

In addition to omniphobic coatings to lessen friction drag, ONR is sponsoring other types of coating research to prevent corrosion on both ships and aircraft and fight biofouling (the buildup of barnacles on hulls). Similar coatings can also prevent ice from forming on ships operating in cold regions, or make ice removal much easier than conventional methods like scraping.

Tuteja's team is conducting further tests on the omniphobic , but they plan to have it ready for small-scale military and civilian use within the next couple of years.

Explore further: 'Everything-repellent' coating could kidproof phones, homes

Related Stories

'Everything-repellent' coating could kidproof phones, homes

April 11, 2018

In an advance that could grime-proof phone screens, countertops, camera lenses and countless other everyday items, a materials science researcher at the University of Michigan has demonstrated a smooth, durable, clear coating ...

A material that most liquids won't wet

January 16, 2013

(Phys.org)—A nanoscale coating that's at least 95 percent air repels the broadest range of liquids of any material in its class, causing them to bounce off the treated surface, according to the University of Michigan engineering ...

Recommended for you

The stiffest porous lightweight materials ever

December 12, 2018

Researchers at ETH have developed and manufactured a family of architectures that maximises the stiffness of porous lightweight materials. It's practically impossible to develop stiffer designs.

Researchers develop smartphone-based ovulation test

December 11, 2018

Investigators from Brigham and Women's Hospital are developing an automated, low-cost tool to predict a woman's ovulation and aid in family planning. Capitalizing on advancements in several areas, including microfluidics, ...

Field-responsive mechanical metamaterials (FRMMs)

December 11, 2018

In a recent study published in Science Advances, materials scientists Julie A. Jackson and colleagues presented a new class of materials architecture called field-responsive mechanical metamaterials (FRMM). The FRMMs exhibit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.