Efficient, eco-friendly production of fine chemicals

June 25, 2018 by Fabio Bergamin, ETH Zurich
"What makes the catalyst so efficient is that the palladium atom can move within the cavity to adapt to the process requirements while remaining trapped inside," explains ETH Professor Javier Pérez-Ramírez. The palladium atom is shown in green. Credit: ETH Zurich / Edvin Fako

The chemical industry produces not just valuable vitamins, pharmaceuticals, flavours and pesticides, but often a large amount of waste, too. This is particularly true of pharmaceutical and fine-chemical production, where the volume of desired product may be just a fraction of the volume of waste and unsaleable by-products of synthesis.

One reason for this is that many chemical reactions make use of catalysts in dissolved form, as Javier Pérez-Ramírez, Professor of Catalysis Engineering, says. Catalysts are substances that accelerate a chemical reaction. In the case of dissolved catalysts, it often takes a huge amount of effort to separate them from the solvent and from the reaction products for reuse. Catalysts in solid form avoid this problem altogether.

Pérez-Ramírez and his group have now collaborated with other European scientists and an industry partner to develop just such a solid for a major chemical reaction, as the researchers report in the magazine Nature Nanotechnology. Their catalyst is a molecular lattice composed of carbon and nitrogen atoms (graphitic carbon nitride) that features cavities of atomic dimensions into which the researchers placed palladium atoms.

Efficient catalyst for a Nobel-prizewinning reaction

By making tiny particles of this palladium-carbon-nitrogen material, the scientists were able to show that it catalyses what is known as the Suzuki reaction very efficiently. "In chemistry, forming a bond between two carbon atoms is often done using the Suzuki reaction," says Sharon Mitchell, a scientist in Pérez-Ramírez's lab. It was this reaction that won Japanese scientist Akira Suzuki and two colleagues the Nobel Prize in Chemistry 2010.

Thus far, the process in commercial scale has widely used soluble palladium catalysts. Earlier attempts to attach the soluble catalyst to a solid body always resulted in relatively unstable and inefficient catalysts.

Considerably less waste

The ETH researchers' new palladium catalyst is much more stable. For that reason, and because it does not dissolve in the reaction liquid, it can be used over a much longer time period. What's more, the catalyst is much more cost-effective and around twenty times more efficient than the catalysts used today.

"That means the not only cuts the costs of synthesising fine chemicals, it also reduces the consumption of palladium and decreases the amount of waste," Pérez-Ramírez says. The catalyst might soon be ready for use in industry: the scientists claim that it should be easy to scale up catalyst production and use from the laboratory.

As the researchers point out, the use of graphitic carbon nitride as a is not limited to the Suzuki . It should also be possible to populate the lattice with atoms of metals other than palladium in order to catalyse other syntheses. The ETH scientists will explore these possibilities in future research. They also plan to found a spin-off company to market this novel family of catalysts.

Explore further: Palladium catalyst speeds up two separate reactions, making useful molecules in a single process

More information: Zupeng Chen et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling, Nature Nanotechnology (2018). DOI: 10.1038/s41565-018-0167-2

Related Stories

Nickel in the X-ray limelight

March 27, 2018

Making chemicals for industrial processes often requires scientists to use a catalyst—a substance that speeds up a chemical reaction, reducing the amount of energy it takes to make different products.

Converting CO2 to store renewable energy

April 19, 2018

Yuvraj Birdja converted CO2 to formic acid to store energy in a sustainable way, with different catalysts. With this new knowledge, scientists are a step closer in industrially converting CO2 to chemicals and fuels. This ...

Researchers develop eco-friendly, 4-in-1 catalyst

April 24, 2017

Brown University researchers have developed a new composite catalyst that can perform four separate chemical reactions in sequential order and in one container to produce compounds useful in making a wide range of pharmaceutical ...

Recommended for you

Graphene on the way to superconductivity

November 9, 2018

Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance. They probed the band structure at BESSY II with extremely high resolution ...

Directivity to improve optical devices

November 9, 2018

A team of researchers from the Dutch institute AMOLF, Western University (Canada), and the University of Texas (United States of America) recently demonstrated the use of algorithmic design to create a new type of nanophotonic ...

Graphene takes a step toward renewable fuel

November 8, 2018

Using the energy from the sun and graphene applied to the surface of cubic silicon carbide, researchers at Linköping University, Sweden, are working to develop a method to convert water and carbon dioxide to the renewable ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.