Kepler begins 18th observing campaign with a focus on star clusters

May 24, 2018 by Calla Cofield, NASA
Credits: NASA/Ames Research Center/Ann Marie Cody

NASA's planet-hunting Kepler spacecraft began the 18th observing campaign of its extended mission, K2, on May 12. For the next 82 days, Kepler will stare at clusters of stars, faraway galaxies, and a handful of solar system objects, including comets, objects beyond Neptune, and an asteroid. The Kepler spacecraft is expected to run out of fuel within several months.

Campaign 18 is a familiar patch of space, as it's approximately the same region of sky that Kepler observed during Campaign 5 in 2015. One of the advantages of observing a field over again is that planets outside the solar system, called exoplanets, may be found orbiting farther from their . Astronomers hope to not only discover new exoplanets during this campaign, but also to confirm candidates that were previously identified.

Open clusters are regions where stars formed at roughly the same age, including Messier 67 and Messier 44, otherwise known as Praesepe or the Beehive . Home to six known exoplanets, the Praesepe cluster will be searched anew for objects that are transiting, or crossing, around these and other stars.

At approximately 800 million years old, the stars in Praesepe are in their teenage years compared to our Sun. Many of these youthful stars are active and have large spots that can reveal information about a star's magnetic field, a fundamental component of a star that drives flaring and other activity that may have influence over habitability. By comparing brightness data collected in Campaign 18 and 5, scientists can learn more about how a star's spots cycle over time.

At several billion years, the Messier 67 cluster is much older and has many Sun-like stars. It is one of the best-studied in the sky. Astronomers will continue their studies of stellar astrophysics by analyzing Messier 67's stars for changes in brightness. They will search for the signatures of exoplanets, observe the pulsations of evolved stars, and measure the rotation rates of many other stars in the cluster.

Beyond these clusters, Kepler will observe blazars, the energetic nuclei of faraway galaxies with in their centers. These objects propel jets of hot plasma toward Earth (though they are far too distant to affect us). The most notable of these targets is OJ 287, a system hosting two black holes in orbit around each other, one of which weighs 18 billion times the mass of the Sun!

Even closer to home, Kepler will look at , including comets, trans-Neptunian objects, and the near-Earth asteroid 99942 Apophis. This 1,000-foot chunk of rock will pass within 20,000 miles of Earth in the year 2029—close but still comfortably far enough to not pose any danger to Earthlings.

Explore further: NASA's new planet-hunter to seek closer, Earth-like worlds

Related Stories

Kepler's six years in science (and counting)

May 13, 2015

NASA's Kepler spacecraft began hunting for planets outside our solar system on May 12, 2009. From the trove of data collected, we have learned that planets are common, that most sun-like stars have at least one planet and ...

Hubble's celestial snow globe

December 12, 2017

It's beginning to look a lot like the holiday season in this NASA Hubble Space Telescope image of a blizzard of stars, which resembles a swirling snowstorm in a snow globe.

First planet found around solar twin in star cluster

January 15, 2014

Astronomers have used ESO's HARPS planet hunter in Chile, along with other telescopes around the world, to discover three planets orbiting stars in the cluster Messier 67. Although more than one thousand planets outside the ...

Image: Hubble stares into the crammed center of Messier 22

April 13, 2015

This image shows the center of the globular cluster Messier 22, also known as M22, as observed by the NASA/ESA Hubble Space Telescope. Globular clusters are spherical collections of densely packed stars, relics of the early ...

Solar-like oscillations in other stars

December 12, 2016

Our sun vibrates due to pressure waves generated by turbulence in its upper layers (the layers dominated by convective gas motions). Helioseismology is the name given to the study of these oscillations, which can shed light ...

Recommended for you

Superflares from young red dwarf stars imperil planets

October 18, 2018

The word "HAZMAT" describes substances that pose a risk to the environment, or even to life itself. Imagine the term being applied to entire planets, where violent flares from the host star may make worlds uninhabitable by ...

Blazar's brightness cycle confirmed by NASA's Fermi mission

October 18, 2018

A two-year cycle in the gamma-ray brightness of a blazar, a galaxy powered by a supermassive black hole, has been confirmed by 10 years of observations from NASA's Fermi Gamma-ray Space Telescope. The findings were announced ...

Astronomers catch red dwarf star in a superflare outburst

October 18, 2018

New observations by two Arizona State University astronomers using the Hubble Space Telescope have caught a red dwarf star in a violent outburst, or superflare. The blast of radiation was more powerful than any such outburst ...

Magnetic fields may be the key to black hole activity

October 17, 2018

Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.