A new giant virus found in the waters of Oahu, Hawaii

May 3, 2018, University of Hawaii at Manoa
Coastal waters can turn green as shown here at Waimanalo Beach (left panel) when tiny single-celled algae in the genus Tetraselmis (inset) grow to high concentrations. Credit: Lydia Baker, UH Manoa, SOEST

Researchers at the Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE) at the University of Hawai'i (UH) at Mānoa have characterized a new, unusually large virus that infects common marine algae. Found in the coastal waters off Oahu, Hawai'i, it contains the biggest genome ever sequenced for a virus infecting a photosynthetic organism.

"Most people are familiar with ," said Christopher Schvarcz, the UH Mānoa oceanography graduate student who led the project as part of his doctoral dissertation, "because there are so many that cause diseases in humans. But we are not alone; even the microscopic plankton in the ocean are constantly battling viral infections."

Much of the phytoplankton that grows in the ocean every day gets eaten, thereby sustaining animals in the . It is common, however, for to spread through populations of phytoplankton. When this happens, the infected phytoplankton cells disintegrate and are decomposed by bacteria, diverting that away from the animals.

"That sounds bad," said Grieg Steward, professor in the UH Mānoa Department of Oceanography and co-author on the study, "but viruses actually help maintain balance in the marine ecosystem. Viruses spread more efficiently through highly concentrated populations, so if one type of phytoplankton grows faster than the others and starts to dominate, it can get knocked down to lower levels by a viral infection, giving the other species a chance to thrive."

Viruses have to replicate inside of cells, putting some constraints on how big they can be, but the known upper size limit of viruses has been creeping upward over the past 15 years as researchers have focused on finding more examples of what are now referred to as "giant" viruses.

The virus TetV is able to replicate inside the algal cell (right panel, scale bar=1 μm), ultimately killing the cell and releasing free virus particles (inset, scale bar 0.2 μm). Credit: Christopher Schvarcz, UH Manoa, SOEST

"Most viruses are so tiny that we need an electron microscope to see them," said Steward "but these giants rival bacteria in size, and their genomes often code for functions we have never seen in viruses before."

The described by Schvarcz and Steward in their recent paper in the journal Virology was named TetV-1, because it infects single-celled algae called Tetraselmis. After sequencing its genome, Schvarcz discovered that the virus has a number of genes that it seems to have picked up from the alga it infects. Two of these appear to code for enzymes involved in fermentation, which is a process used by microorganisms to get energy from sugars in the absence of oxygen. Fermentation is familiar to many of us, because it is the key to making beer, wine, and spirits. Why would a virus need these genes? The authors don't know for sure, but they have a guess.

"Tetraselmis can grow to extraordinarily high concentrations in ," explains Schvarcz, "turning the water from clear blue to an intense green. If TetV were to spread under those conditions, huge numbers of cells would succumb to viral infection. Bacteria would immediately begin decomposing the dead algae and quickly use up all the oxygen in the water. We think that the fermentation genes in TetV may allow the virus to maintain its energy flow under even as it shuts down the host cell systems."

Schvarcz and Steward plan to conduct field and lab experiments to test whether this idea is correct. Tetraselmis is used as a food source for aquaculture and as a source of starch for the biofuel industry, so the authors speculate that understanding exactly how TetV manipulates the metabolism of its host might have some practical applications. The ability of TetV to inject DNA into these cells might be exploited, for example, to reprogram the algae to make more of a desired product.

"We have more to learn about this particular virus," mused Steward "and its just one example plucked from an ocean that has millions of them floating in every teaspoon."

Considering the numbers, it seems certain there are many more unusual viruses waiting to be discovered just under the next wave.

Explore further: Researchers capture first representative of most abundant giant viruses in the sea

More information: Christopher R. Schvarcz et al, A giant virus infecting green algae encodes key fermentation genes, Virology (2018). DOI: 10.1016/j.virol.2018.03.010

Related Stories

Virus reprograms ocean plankton

August 21, 2017

A virus which infects ocean plankton can reprogramme cells and change the way they absorb nutrients - potentially changing how carbon is stored in the ocean, new research shows.

Ancient origins of viruses discovered

April 4, 2018

Research published today in Nature has found that many of the viruses infecting us today have ancient evolutionary histories that date back to the first vertebrates and perhaps the first animals in existence.

New type of virus found in the ocean

January 24, 2018

A type of virus that dominates water samples taken from the world's oceans has long escaped analysis because it has characteristics that standard tests can't detect. However, researchers at MIT and the Albert Einstein College ...

Viruses in the oceanic basement

March 29, 2017

A team of scientists from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) showed for the first time that many novel viruses are present in the fluids circulating deep in the rocky ...

Recommended for you

A world of parasites

May 25, 2018

Alex Betts, Craig MacLean and Kayla King from the Department of Zoology, shed light on their recent research published in Science, which addressed the impact that parasite communities have on evolutionary change and diversity.

Bumblebees confused by iridescent colors

May 25, 2018

Iridescence is a form of structural colour which uses regular repeating nanostructures to reflect light at slightly different angles, causing a colour-change effect.

A better B1 building block

May 25, 2018

Humans aren't the only earth-bound organisms that need to take their vitamins. Thiamine – commonly known as vitamin B1 – is vital to the survival of most every living thing on earth. But the average bacterium or plant ...

Plant symbioses—fragile partnerships

May 25, 2018

All plants require an adequate supply of inorganic nutrients, such as fixed nitrogen (usually in the form of ammonia or nitrate), for growth. A special group of flowering plants thus depends on close symbiotic relationships ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JongDan
not rated yet May 03, 2018
Virus beer when?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.