Uncovering the secret law of the evolution of galaxy clusters

April 24, 2018, Osaka University
Fig. 1. (Left) Galaxy cluster MACS J1206 observed with the Subaru Telescope. (Right) Magnified image of the left by the Hubble Space Telescope. Credit: NASA/ESA, Umetsu et al. 2012, ApJ

As science enthusiasts around the world bid farewell to legendary cosmologist Stephen Hawking, researchers continue to make important discoveries about the evolution of galaxy clusters that capture the imagination.

Now, an international collaboration between Yutaka Fujita at Osaka University and researchers from Taiwan, Italy, Japan, and the United States found a new fundamental law that stipulates the evolution of . They recently reported the study in The Astrophysical Journal.

Galaxy clusters are the largest celestial body in the Universe (Fig.1). However, it has been difficult to measure their size and mass accurately because they mainly consist of that we cannot observe directly. One way to observe the dark matter indirectly is to use the gravitational lensing effect based on Einstein's theory of relativity. Light rays from a galaxy behind a cluster are pulled by the gravity of the cluster as they pass through it, and their paths are bent (Fig.2). This is exactly the same effect as a lens, focusing the light of the distant galaxy and distorting its shape. If we can measure the distortion of the shape for many background galaxies, we can reveal the gravitational field of the cluster, and as a result, we can accurately measure its size and mass.

Fig. 2. Schematic figure of gravitational lensing. Light rays from a background galaxy are bent by the gravity of a galaxy cluster. Credit: Yutaka Fujita
"One difficulty in our research," explains Keiichi Umetsu at Academia Sinica in Taiwan, "was that accurate measurements of the distortion were necessary." To overcome this problem, the research team has used precise observational data from NASA's Hubble Space Telescope and the Subaru Telescope operated by the National Astronomical Observatory of Japan.

Combining with gas temperature data from the Chandra X-ray satellite, the research group statistically examined those latest data and found that they conform to a simple law represented only by the size, mass, and gas temperature of clusters. Moreover, by making full use of computer simulations, they showed that clusters have grown over 4 to 8 billion years according to the law. Theoretically, the law means that those gigantic clusters are still in adolescence, growing by drawing a large amount of surrounding substances with their strong gravity (Fig.3).

"We've discovered the law that regulates the growth of clusters of ," Fujita says. "Clusters have an internal structure uniquely created in an early growth spurt."

Fig. 3. (Left) Growing cluster attracting many galaxies and dark matter. Galaxies are rapidly falling and gas temperature tends to rise. The new law indicates that the clusters are in this state. (Right) Matured cluster in a calm state, attracting little material. Credit: Yutaka Fujita

The law is so simple that we can use it to calibrate mass-observable relations, which are a key ingredient for studying the cosmological laws of the Universe.

"Our research draws us closer to explaining the evolutionary history of clusters and the Universe," Fujita adds.

Explore further: Hubble catches a colossal cluster

More information: Discovery of a new fundamental plane dictating galaxy cluster evolution from gravitational lensing. The Astrophysical Journal. DOI: 10.3847/1538-4357/aab8fd

Related Stories

Hubble catches a colossal cluster

April 13, 2018

This NASA/ESA Hubble Space Telescope image shows a massive galaxy cluster glowing brightly in the darkness. Despite its beauty, this cluster bears the distinctly unpoetic name of PLCK G308.3-20.2.

Hubble weighs in on mass of three million billion suns

January 16, 2018

In 2014, astronomers using the NASA/ESA Hubble Space Telescope found that this enormous galaxy cluster contains the mass of a staggering three million billion suns—so it's little wonder that it has earned the nickname of ...

Hubble digs into cosmic archaeology

October 30, 2017

This NASA/ESA Hubble Space Telescope image is chock-full of galaxies. Each glowing speck is a different galaxy, except the bright flash in the middle of the image which is actually a star lying within our own galaxy that ...

New evidence for dark matter makes it even more exotic

October 26, 2017

Galaxy clusters are the largest known structures in the Universe, containing thousands of galaxies and hot gas. But more importantly, they contain the mysterious dark matter, which accounts for 27 percent of all matter and ...

Mapping dark matter

July 24, 2017

About eighty-five percent of the matter in the universe is in the form of dark matter, whose nature remains a mystery. The rest of the matter in the universe is of the kind found in atoms. Astronomers studying the evolution ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

fthompson495
1 / 5 (1) Apr 24, 2018
'Scientists Thought All Galaxies Had Dark Matter, but They Just Found One Without It'
https://www.smith...0968628/

Dark matter fills 'empty' space, strongly interacts with visible matter and is displaced by visible matter.

The reason for the mistaken notion the galaxy is missing dark matter is that the galaxy is so diffuse that it doesn't displace the dark matter outward and away from it to the degree that the dark matter is able to push back and cause the stars far away from the galactic center to speed up.

It's not that there is no dark matter connected to and neighboring the visible matter. It's that the galaxy has not coalesced enough to displace the dark matter to such an extent that it forms a 'halo' around the galaxy.

A galaxy's halo is not a clump of dark matter traveling with the galaxy. A galaxy's halo is displaced dark matter.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.