Key tethering protein found to transport cellular cholesterol

April 17, 2018, Osaka University
The intercellular pathway of cholesterol Credit: Osaka University

Despite its less-than-stellar reputation in the news, cholesterol is an essential molecule for living things. It serves as the building block for hormones and gives shape to the membranes that enclose cells and their internal parts (Fig.1). Consequently, many diseases arise from defects in the proper transport of cholesterol. Now, researchers at Osaka University have shed new light on one of the key pathways used to transport cholesterol inside of cells.

"Intracellular cholesterol transport occurs through two pathways, vesicular and non-vesicular," says lead author Tomoaki Sobajima. "The vesicular shuttles cholesterol using vesicles that 'pinch off' from, and fuse with, cell membranes. The non-vesicular pathway is just as important to cholesterol transport, but many of the proteins involved still need to be identified for us to understand how exactly the pathway works."

The researchers set out to demystify non-vesicular transport using a screening assay, which allowed them to find proteins that interact with known players in the pathway. From this screening, they identified RELCH. Although not previously connected to cholesterol transport, RELCH was found to interact with two critical proteins in the pathway: Rab11 and OSBP. These interactions laid the initial groundwork for the key discovery in the study.

"Non-vesicular transport is thought to happen when two membranes tether together, allowing cholesterol to jump from one to the next," Sobajima adds. "We set up an artificial system that lets us measure how well cholesterol moves along tethered cell membranes. What we found was that Rab11-containing membranes (or beads) and OSBP-containing membranes (or beads) tether together very effectively when RELCH is added to the mix (Fig.2), and cholesterol can then move easily across the membranes (Fig.3)."

Rab11 bound red beads and OSBP bound green beads aggregate in the presence of RELCH. Credit: Osaka University

The findings, published in The Journal of Cell Biology, may serve as a jumping-off point for further studies in this newly-uncovered transfer system for cholesterol.

"Our study suggests that RELCH is a key linkage protein that allows cholesterol to be transferred across Rab11-containing recycling endosomes to OSBP-containing Golgi membranes," lead investigator Akihiro Harada concludes. "Identifying the Rab11-RELCH-OSBP complex is a major step forward in understanding how non-vesicular transport operates. We believe the findings will eventually help drive the discovery process for treatments of -related metabolic disorders involving this unique pathway."

The structure of Rab11-RELCH-OSBP complex Credit: Osaka University

Explore further: A spring-loaded sensor for cholesterol in cells

More information: Tomoaki Sobajima et al, The Rab11-binding protein RELCH/KIAA1468 controls intracellular cholesterol distribution, The Journal of Cell Biology (2018). DOI: 10.1083/jcb.201709123

Related Stories

A spring-loaded sensor for cholesterol in cells

December 7, 2017

Although too much cholesterol is bad for your health, some cholesterol is essential. Most of the cholesterol that the human body needs is manufactured in its own cells in a synthesis process consisting of more than 20 steps. ...

New way to treat cholesterol may be on the horizon

October 27, 2017

A breakthrough discovery by scientists at Houston Methodist could change the way we treat cholesterol. Researchers found new evidence that challenges a 40-year notion of how fast we eliminate it from our bodies.

Recommended for you

Houseplants could one day monitor home health

July 20, 2018

In a perspective published in the July 20 issue of Science, Neal Stewart and his University of Tennessee coauthors explore the future of houseplants as aesthetically pleasing and functional sirens of home health.

LC10 – the neuron that tracks fruit flies

July 20, 2018

Many animals rely on vision to detect, locate, and track moving objects. Male Drosophila fruit flies primarily use visual cues to stay close to a female and to direct their courtship song towards her. Scientists from the ...

Putting bacteria to work

July 20, 2018

The idea of bacteria as diverse, complex perceptive entities that can hunt prey in packs, remember past experiences and interact with the moods and perceptions of their human hosts sounds like the plot of some low-budget ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.