Terahertz computer chip now within reach

March 26, 2018, Hebrew University of Jerusalem

Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips.

Until now, two major challenges stood in the way of creating the terahertz : overheating and scalability.

However, in a paper published this week in Laser & Photonics Reviews, Dr. Levy, head of HU's Nano-Opto Group and HU emeritus professor Joseph Shappir have shown proof of concept for an optic that integrates the speed of optic (light) communications with the reliability—and manufacturing scalability—of electronics.

Optic communications encompass all technologies that use light and transmit through , such as the internet, email, text messages, phone calls, the cloud and data centers, among others. Optic communications are super fast but in microchips they become unreliable and difficult to replicate in large quanitites.

Now, by using a Metal-Oxide-Nitride-Oxide-Silicon (MONOS) structure, Levy and his team have come up with a new integrated circuit that uses flash memory technology—the kind used in flash drives and discs-on-key—in microchips. If successful, this technology will enable standard 8-16 gigahertz computers to run 100 times faster and will bring all optic devices closer to the holy grail of communications: the terahertz chip.

As Dr. Uriel Levy shared, "this discovery could help fill the "THz gap' and create new and more powerful wireless devices that could transmit data at significantly higher speeds than currently possible. In the world of hi-tech advances, this is game-changing technology,"

Meir Grajower, the leading HU Ph.D. student on the project, added, "It will now be possible to manufacture any optical with the precision and cost-effectiveness of flash technology."

Explore further: Big energy savings: Researchers build the world's smallest electro-optic modulator

More information: Meir Grajower et al. Non-Volatile Silicon Photonics Using Nanoscale Flash Memory Technology, Laser & Photonics Reviews (2018). DOI: 10.1002/lpor.201700190

Related Stories

Recommended for you

Researchers investigate 'why clothes don't fall apart'

April 23, 2018

Cotton thread is made of many tiny fibers, each just 2-3 cm long, yet when spun together the fibers are capable of transmitting tension over indefinitely long distances. From a physics perspective, how threads and yarns transmit ...

Swirling liquids work similarly to bitcoin

April 23, 2018

Fluid dynamics is not something that typically comes to mind when thinking about bitcoin. But for one Stanford physicist, the connection is as simple as stirring your coffee.

Atoms may hum a tune from grand cosmic symphony

April 19, 2018

Researchers playing with a cloud of ultracold atoms uncovered behavior that bears a striking resemblance to the universe in microcosm. Their work, which forges new connections between atomic physics and the sudden expansion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.