The genomes of five late Neandertals provide insights into Neandertal population history

March 21, 2018, Max Planck Society
Upper molar of a male Neandertal, Spy 94a, from Spy, Belgium. Credit: I. Crevecoeur

Researchers at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have sequenced the genomes of five Neandertals that lived between 39,000 and 47,000 years ago. These late Neandertals are all more closely related to the Neandertals that contributed DNA to modern human ancestors than an older Neandertal from the Altai Mountains that was previously sequenced. Their genomes also provide evidence for a turnover in the Neandertal population towards the end of Neandertal history.

Due to the limited number of specimens and difficulties in obtaining endogenous DNA from such old material, the number of Neandertals for which nuclear genomes have been sequenced is still limited. Since 2010 whole genome sequences have been generated for four Neandertals from Croatia, Siberia and the Russian Caucasus. This study adds five new genomes representing Neandertals from a wider geographic range and from a later time period than what was previously obtained.

New methods for the removal of contaminating DNA from microbes and present-day humans that were developed by the Leipzig group have now enabled the researchers to sequence the genomes of five Neandertals from Belgium, France, Croatia, and Russia that are between 39,000 and 47,000 years old. These therefore represent some the latest surviving Neandertals in Europe.

Having genomes from multiple Neandertals allows the researchers to begin to reconstruct Neandertal history. "We see that the genetic similarity between these Neandertals is well-correlated with their geographical location. By comparing these genomes to the genome of an older Neandertal from the Caucasus we show that Neandertal populations seem to have moved and replaced each other towards the end of their history", says first author, Mateja Hajdinjak.

The team also compared these Neandertal genomes to the genomes of people living today, and showed that all of the late Neandertals were more similar to the Neandertals that contributed DNA to present-day people living outside Africa than an older Neandertal from Siberia. Intriguingly, even though four of the Neandertals lived at a time when modern humans had already arrived in Europe they do not carry detectable amounts of modern human DNA. "It may be that gene flow was mostly unidirectional, from Neandertals into modern humans", says Svante Pääbo, Director at the Max Planck Institute for Evolutionary Anthropology.

"Our work demonstrates that the generation of sequences from a large number of archaic human individuals is now technically feasible, and opens the possibility to study Neandertal populations across their temporal and geographical range", says Janet Kelso, the senior author of the new study.

Explore further: Dating encounters between modern humans and Neandertals

More information: Mateja Hajdinjak et al, Reconstructing the genetic history of late Neanderthals, Nature (2018). DOI: 10.1038/nature26151

Related Stories

Dating encounters between modern humans and Neandertals

October 4, 2012

To discover why Neandertals are most closely related to people outside Africa, Harvard and Max Planck Institute scientists have estimated the date when Neandertals and modern Europeans last shared ancestors. The research, ...

More traits associated with your Neandertal DNA

October 5, 2017

After humans and Neandertals met many thousands of years ago, the two species began interbreeding. Although Neandertals aren't around anymore, about two percent of the DNA in non-African people living today comes from them. ...

German researchers publish full Neanderthal genome

March 19, 2013

(Phys.org) —The Max Planck Institute for Evolutionary Anthropology, in Leipzig, Germany, hascompleted the genome sequence of a Neandertal and makes the entire sequence available to the scientific community today.

Neandertals, humans share key changes to 'language gene'

October 18, 2007

A new study published online on October 18th in Current Biology reveals that adaptive changes in a human gene involved in speech and language were shared by our closest extinct relatives, the Neandertals. The finding reveals ...

Recommended for you

Chinese Cretaceous fossil highlights avian evolution

September 24, 2018

A newly identified extinct bird species from a 127 million-year-old fossil deposit in northeastern China provides new information about avian development during the early evolution of flight.

Ancient mice discovered by climate cavers

September 24, 2018

The fossils of two extinct mice species have been discovered in caves in tropical Queensland by University of Queensland scientists tracking environment changes.

The first predators and their self-repairing teeth

September 24, 2018

The earliest predators appeared on Earth 480 million years ago—and they even had teeth capable of repairing themselves. A team of palaeontologists led by Bryan Shirley and Madleen Grohganz from the Chair for Palaeoenviromental ...

Fat from 558 million years ago reveals earliest known animal

September 20, 2018

Scientists from The Australian National University (ANU) and overseas have discovered molecules of fat in an ancient fossil to reveal the earliest confirmed animal in the geological record that lived on Earth 558 million ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

AllStBob
3 / 5 (2) Mar 21, 2018
If you randomly picked 5 late Neandertals the probability that at least one had a homo sapien ancestor could be tiny even if all of them had living homo sapien descendants, even if the flow of genes was equal, but rare, in both directions.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.