Recreating outer space plasma systems in the lab

February 15, 2018, Tohoku University
Recreating outer space in the lab
Physical picture of the electron gas expanding in the magnetic wall, where Q = 0 for the adiabatic expansion, resulting in a change of the internal energy of the electron gas is equal to the work done on their surroundings. The magnetic field can behave as a flexible wall with no heat transfer, i.e., the perfectly adiabatic wall. Credit: Kazunori Takahashi

Thermodynamics provides insight into the internal energy of a system and the energy interaction with its surroundings. This relies on the local thermal equilibrium of a system. The application of classical thermodynamics to systems in disequilibrium is challenging. These include granular gas and materials, hard sphere packing in 3-D, and plasma systems.

The of a gas with no electric charge has typically been studied using traditional thermodynamics. Experiments with simple gases can easily be carried out in laboratories, whereas those involving gaseous plasmas of astrophysical and solar interest pose a number of difficulties. Observations near the sun and in Earth orbit have been interpreted as a demonstration that solar wind does not expand adiabatically from the sun, as would be expected for this near-collisionless environment. Rather, it expands isothermally, implying that heating of the plasma occurs as it propagates through interplanetary space.

Many laboratory-based experiments under adiabatic conditions have also shown a nearly isothermal expansion in magnetic nozzles and the relation with astrophysical plasmas. However, in these expanding adiabatic systems, it appears that electric fields may have a significant effect on the dynamics of the electrons, and a very strong electric trapping the electrons usually forms at the plasma-wall boundary in laboratory plasmas. So what would happen if there were no electric fields trapping the electrons?

Researchers from Tohoku University and the Australian National University have studied the energy state of of plasma when it interacts with magnetic and electric fields [Fig1]. The study has implications for the understanding of magnetic nozzle plasma thrusters used to propel spacecraft, since energy conversion is the essential process to determine the thruster performance.

In a laboratory at Tohoku University, researchers Kazunori Takahashi, Christine Charles, Rod W Boswell and Akira Ando have performed a specially designed experiment in which they removed the electric field-trapping electrons in the system, resulting in the electrons solely interacting with the expanding . The experimental results show the decreasing electron temperature along the expansion, following a near-perfect adiabatic expansion of an electron gas upon removal of the electric fields from the system.

Keeping in mind the first law of thermodynamics, there is presently no heat transfer, but work must be done on the walls surrounding the system to lower its internal energy. The expanding magnetic field is not a physical boundary, so no heat is transferred. When the electric fields within the plasma are removed, none of the electrons are trapped in the plasma system, leaving the electrons free to interact with the confining magnetic wall—the plasma pressure force does work on the magnetic boundary. This pressure force can also be understood as a Lorentz force generated to propel a spacecraft in a magnetic nozzle plasma thruster.

Hence, the decrease in the electron temperature along the expansion results from lowering the internal of this adiabatic system with the electron gas doing work on the expanding magnetic field. This implies that classical thermodynamic principles can be extended to the expansion of a collisionless , being far from equilibrium, in a magnetic nozzle.

By removing the plasma-wall boundary in their laboratory plasma and thereby removing the corresponding electric field and electron trapping, the researchers reproduced the boundary-free conditions in space. The results give new insight into plasma thermodynamics and technology applicable to space physics and propulsion development. Further detailed experiments are planned. The paper was published in Physical Review Letters.

Explore further: On the road to creating an electrodeless spacecraft propulsion engine

More information: Kazunori Takahashi et al, Adiabatic Expansion of Electron Gas in a Magnetic Nozzle, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.045001

Related Stories

Plasma from lasers can shed light on cosmic rays, solar eruptions

November 10, 2017

Lasers that generate plasma can provide insight into bursts of subatomic particles that occur in deep space, scientists have found. Such findings could help scientists understand cosmic rays, solar flares and solar eruptions—emissions ...

Magnetic shielding of ion beam thruster walls

February 13, 2013

Electric rocket engines known as Hall thrusters, which use a super high-velocity stream of ions to propel a spacecraft in space, have been used successfully onboard many missions for half a century. Erosion of the discharge ...

Recommended for you

A novel topological insulator

October 12, 2018

For the first time, physicists have built a unique topological insulator in which optical and electronic excitations hybridize and flow together. They report their discovery in Nature.

'Fudge factors' in physics?

October 11, 2018

Science is poised to take a "quantum leap" as more mysteries of how atoms behave and interact with each other are unlocked.

Disorder induces topological Anderson insulator

October 11, 2018

Topological insulators (TIs) host exotic physics that could shed new light on the fundamental laws of nature. What's more, the unusual properties of TIs hold tremendous promise for technological applications, including in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.