New study reveals strong El Nino events cause large changes in Antarctic ice shelves

January 8, 2018, University of California - San Diego
The Pine Island Ice Shelf Terminus. Credit: Jeremy Harbeck/NASA

A new study published Jan. 8 in the journal Nature Geoscience reveals that strong El Nino events can cause significant ice loss in some Antarctic ice shelves while the opposite may occur during strong La Nina events.

El Niño and La Niña are two distinct phases of the El Niño/Southern Oscillation (ENSO), a naturally occurring phenomenon characterized by how water temperatures in the tropical Pacific periodically oscillate between warmer than average during El Niños and cooler during La Niñas.

The research, funded by NASA and the NASA Earth and Space Science Fellowship, provides new insights into how Antarctic ice shelves respond to variability in global ocean and atmospheric conditions.

The study was led by Fernando Paolo while a PhD graduate student and postdoc at Scripps Institution of Oceanography at the University of California San Diego. Paolo is now a postdoctoral scholar at NASA's Jet Propulsion Laboratory. Paolo and his colleagues, including Scripps glaciologist Helen Fricker, discovered that a strong El Niño event causes ice shelves in the Amundsen Sea sector of West Antarctica to gain mass at the surface and melt from below at the same time, losing up to five times more ice from basal melting than they gain from increased snowfall. The study used satellite observations of the height of the ice shelves from 1994 to 2017.

"We've described for the first time the effect of El Niño/Southern Oscillation on the West Antarctic ice shelves," Paolo said. "There have been some idealized studies using models, and even some indirect observations off the ice shelves, suggesting that El Niño might significantly affect some of these shelves, but we had no actual ice-shelf observations. Now we have presented a record of 23 years of satellite data on the West Antarctic ice shelves, confirming not only that ENSO affects them at a yearly basis, but also showing how."

The opposing effects of El Niño on ice shelves - adding mass from snowfall but taking it away through basal melt - were at first difficult to untangle from the satellite data. "The satellites measure the height of the ice shelves, not the mass, and what we saw at first is that during strong El Niños the height of the ice shelves actually increased," Paolo said. "I was expecting to see an overall reduction in height as a consequence of mass loss, but it turns out that height increases."

Front of the Getz Ice Shelf. Credit: Jeremy Harbeck/NASA

After further analysis of the data, the scientists found that although a strong El Niño changes wind patterns in West Antarctica in a way that promotes flow of warm ocean waters towards the ice shelves to increase melting from below, it also increases snowfall particularly along the Amundsen Sea sector. The team then needed to determine the contribution of the two effects. Is the atmosphere adding more mass than the ocean is taking away or is it the other way around?

"We found out that the ocean ends up winning in terms of mass. Changes in mass, rather than height, control how the ice shelves and associated glaciers flow into the ocean," Paolo said. While mass loss by basal melting exceeds mass gain from snowfall during strong El Niño events, the opposite appears to be true during La Niña events.

Over the entire 23-year observation period, the ice shelves in the Amundsen Sea sector of Antarctica had their height reduced by 20 centimeters (8 inches) a year, for a total of 5 meters (16 feet), mostly due to ocean melting. The intense 1997-98 El Nino increased the height of these ice shelves by more than 25 centimeters (10 inches). However, the much lighter snow contains far less water than solid ice does. When the researchers took density of snow into account, they found that ice shelves lost about five times more ice by submarine melting than they gained from new surface snowpack.

"Many people look at this ice-shelf data and will fit a straight line to the data, but we're looking at all the wiggles that go into that linear fit, and trying to understand the processes causing them," said Fricker, who was Paolo's PhD adviser at the time the study was conceived. "These longer satellite records are allowing us to study processes that are driving changes in the ice shelves, improving our understanding on how the grounded ice will change," Fricker said.

"The ice shelf response to ENSO climate variability can be used as a guide to how longer-term changes in global climate might affect ice shelves around Antarctica," said co-author Laurie Padman, an oceanographer with Earth & Space Research, a nonprofit research company based in Seattle. "The new data set will allow us to check if our ocean models can correctly represent changes in the flow of warm water under ice shelves," he added.

Melting of the ice shelves doesn't directly affect sea level rise, because they're already floating. What matters for is the addition of ice from land into the ocean, however it's the ice shelves that hold off the flow of grounded ice toward the ocean.

Understanding what's causing the changes in the "puts us a little bit closer to knowing what's going to happen to the grounded ice, which is what will ultimately affect sea-level rise," Fricker said. "The holy grail of all of this work is improving sea-level rise projections," she added.

Explore further: Antarctic ice shelves rapidly thinning

More information: F. S. Paolo et al, Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation, Nature Geoscience (2017). DOI: 10.1038/s41561-017-0033-0

Related Stories

Antarctic ice shelves rapidly thinning

March 26, 2015

A new study led by Scripps Institution of Oceanography at UC San Diego researchers has revealed that the thickness of Antarctica's floating ice shelves has recently decreased by as much as 18 percent in certain areas over ...

Warming ocean water undercuts Antarctic ice shelves

March 14, 2016

"Upside-down rivers" of warm ocean water threaten the stability of floating ice shelves in Antarctica, according to a new study led by researchers at the University of Colorado Boulder's National Snow and Ice Data Center ...

Secrets of hidden ice canyons revealed

October 11, 2017

We are all aware that Antarctica's ice shelves are thinning, but recently scientists have also discovered huge canyons cutting through the underbelly of these shelves, potentially making them even more fragile. Thanks to ...

Recommended for you

Weather anomalies accelerate the melting of sea ice

January 16, 2018

In the winter of 2015/16, something happened that had never before been seen on this scale: at the end of December, temperatures rose above zero degrees Celsius for several days in parts of the Arctic. Temperatures of up ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Porgie
1 / 5 (3) Jan 08, 2018
They actually come up with this themselves? Since warming of certain areas of the ocean creates heated currents I would have come up with this if I had known they were wondering. OMG!
Parsec
not rated yet Jan 09, 2018
But wait! There were cows in greenland during medieval times so obviously this is all total hogwash.

Anonym
1 / 5 (1) Jan 09, 2018
The headline conflates correlation with causation. As usual. The study inferred that El Nino events cause loss of ice, and then mistakenly blamed warm ocean currents --- well, that's two thirds of the way to the likelier conclusion: that intermittent geothermal warming within the crust (called mantle plumes) drives both El Ninos and Antarctic melting. They occur at the same time due to having the same cause. Ice loss therefore is not a direct effect of "global warming" --- both atmospheric and oceanic warming are artifacts of geothermal heating. One clue is the last two strong El Ninos defied a quiescent Sun, and ice loss continued even during the "Pause."

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.