The mysterious star MWC349

December 1, 2017, Harvard-Smithsonian Center for Astrophysics
The mysterious star MWC349
An infrared 3-color image of the region of star formation which includes the mysterious maser star MWC349 (the very bright star at the right). New spectroscopic results find that the star is probably not physically associated with a nearby star whose age (assuming it was a binary companion) had been used to constrain the age of MWC349 itself. As a result, MWC349 might be a very young massive star. Credit: Strelnitski et al., 2013

Molecular clouds in interstellar space can sometimes produce natural masers (the radio wavelength analogs of lasers) that shine with bright, narrow beams of radiation. Regions of active star formation generate some of the most spectacular such masers—in one case radiating as much energy in a single spectral line as does our Sun in its entire visible spectrum. In these sources, the maser radiation comes from molecules like water or OH that are excited by collisions and the radiation environment around the young stars.

In 1989, maser emission from atoms of atomic hydrogen gas was discovered around the star MWC349, a source with a disk of ionized material that is seen edge-on and a bipolar outflow. The emission is extremely bright and varies in time, the result of sensitivity to changes in the detailed excitation processes. Subsequent observations over the decades have found numerous masing hydrogen lines around this star, allowing scientists to model the emitting region more carefully. MWC349 has two particularly mysterious features.

First, it is an almost unique example of a hydrogen maser source, Despite decades of searching for similar sources, only a few other examples have been found, and they are all much fainter and less dramatic. The second is that its age is not known: it has been suggested to be a very young star still approaching the main-sequence, or an evolved star well into its main-sequence evolution. The consensus so far—that it is old—comes from the fact that there is another star only a few arcseconds away from it and possibly a binary companion. That star is older, about five million years, and so the MWC349 itself must be that old as well. But the evidence is confusing, and the rare and unusual nature of the object makes its age classification an astronomical priority.

CfA astronomers Howard Smith and Jessica Mink, together with four colleagues, used the TRES spectrograph of the 1.5-meter Tillinghast Reflector of the Fred L. Whipple Observatory and the Keck/HIRES spectrograph to measure carefully the velocities of the two from the wavelengths of their spectral lines. They find that the two differ by about thirty-five kilometers per second, making the binary companion scenario unlikely. The scientists conclude that probably the second star is just a coincidental alignment. The result reopens the possibility that MWC349 is a young, massive star in a region of active star formation.

Explore further: Astronomers detect methanol maser emission towards nearby galaxy

More information: MWC349A and B Are Not Gravitationally Bound: New Evidence.

Related Stories

Image: Reflection nebula NGC 1999

October 30, 2017

This spooky sight, imaged by the NASA/ESA Hubble Space Telescope, resembles fog lit by a streetlamp swirling around a curiously shaped hole – and there is some truth in that. While the 'fog' is dust and gas lit up by the ...

Making Massive Stars

September 15, 2009

( -- Our understanding of star formation leans heavily on observations of stars like the sun, namely, those that are modest in mass and that are born and evolve at a relatively leisurely pace.

Masers in stellar nurseries

December 24, 2012

(—Astronomers have come to realize that the process of star formation, once thought to consist essentially of just the simple coalescence of material by gravity, occurs in a complex series of stages. As the gas ...

The anatomy of a stellar outflow

May 28, 2012

( -- Astronomers used to think that star formation simply involved the gradual coalescence of material under the influence of gravity. No longer. Making a new star is a complex process, among other things assembling ...

Recommended for you

Radio nebula discovered around the pulsar PSR J0855–4644

March 21, 2018

Using the Giant Metrewave Radio Telescope (GMRT) in India, an international team of astronomers has detected a diffuse radio emission forming a nebula around the pulsar PSR J0855–4644. The finding is reported March 9 ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Dec 04, 2017
Regions of active star formation generate some of the most spectacular such masers

One needs to keep in mind that this statement represents an unverified, unproven and undocumented assumption. No one has ever witnessed or recorded the "birth" of a star in these supposed "star forming regions". That's just a fact.
1 / 5 (3) Dec 04, 2017
The observations of maser stars could have important consequences for cosmology, because IMO the Hubble red shift should be wavelength dependent and actually zero for wavelengths close to the wavelength of CMBR. This is because IMO red shift results from scattering of photons with photons of CMBR instead of metric expansion of space - and the CMBR photons indeed cannot scatter itself. This assumption has already its partial support in observations like the Pioneer maser anomaly and fact that large galactic clusters don't exhibit CMBR shadow (the Sunyaev-Zheldovich effect should be also wavelength dependent). The problem is, with compare to visible spectrum the Hubble shift is difficult to observe in microwaves/radiowaves, because of lack of reliable molecular spectral peaks, which are blocked by interstellar gas. So that what we need is to find more distant naked stars like the MWC349 above.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.