Chandra reveals the elementary nature of Cassiopeia A

December 12, 2017

Where do most of the elements essential for life on Earth come from? The answer: inside the furnaces of stars and the explosions that mark the end of some stars' lives.

Astronomers have long studied exploded stars and their remains—known as "supernova remnants"—to better understand exactly how stars produce and then disseminate many of the elements observed on Earth, and in the cosmos at large.

Due to its unique evolutionary status, Cassiopeia A (Cas A) is one of the most intensely studied of these supernova remnants. A new image from NASA's Chandra X-ray Observatory shows the location of different elements in the remains of the explosion: silicon (red), sulfur (yellow), calcium (green) and iron (purple). Each of these elements produces X-rays within narrow energy ranges, allowing maps of their location to be created. The blast wave from the explosion is seen as the blue outer ring.

X-ray telescopes such as Chandra are important to study supernova remnants and the elements they produce because these events generate extremely high temperatures—millions of degrees—even thousands of years after the explosion. This means that many , including Cas A, glow most strongly at X-ray wavelengths that are undetectable with other types of telescopes.

Chandra's sharp X-ray vision allows astronomers to gather detailed information about the elements that objects like Cas A produce. For example, they are not only able to identify many of the elements that are present, but how much of each are being expelled into interstellar space.

The Chandra data indicate that the supernova that produced Cas A has churned out prodigious amounts of key cosmic ingredients. Cas A has dispersed about 10,000 Earth masses worth of sulfur alone, and about 20,000 Earth masses of silicon. The iron in Cas A has the mass of about 70,000 times that of the Earth, and astronomers detect a whopping one million Earth masses worth of oxygen being ejected into space from Cas A, equivalent to about three times the mass of the Sun. (Even though oxygen is the most abundant in Cas A, its X-ray emission is spread across a wide range of energies and cannot be isolated in this image, unlike with the other elements that are shown.)

Astronomers have found other elements in Cas A in addition to the ones shown in this new Chandra image. Carbon, nitrogen, phosphorus and hydrogen have also been detected using various telescopes that observe different parts of the electromagnetic spectrum. Combined with the detection of oxygen, this means all of the elements needed to make DNA, the molecule that carries genetic information, are found in Cas A.

Chandra Reveals the Elementary Nature of Cassiopeia A
Location of elements in Cassiopeia A. Credit: NASA/CXC/SAO

Oxygen is the most in the human body (about 65% by mass), calcium helps form and maintain healthy bones and teeth, and iron is a vital part of red blood cells that carry oxygen through the body. All of the oxygen in the Solar System comes from exploding massive stars. About half of the calcium and about 40% of the iron also come from these explosions, with the balance of these elements being supplied by explosions of smaller mass, white dwarf .

While the exact date is not confirmed, many experts think that the stellar explosion that created Cas A occurred around the year 1680 in Earth's timeframe. Astronomers estimate that the doomed star was about five times the mass of the Sun just before it exploded. The star is estimated to have started its life with a mass about 16 times that of the Sun, and lost roughly two-thirds of this mass in a vigorous wind blowing off the star several hundred thousand years before the explosion.

Periodic Table of Elements. Credit: NASA/CXC/K. Divona

Earlier in its lifetime, the star began fusing hydrogen and helium in its core into heavier elements through the process known as "nucleosynthesis." The energy made by the fusion of heavier and balanced the star against the force of gravity. These reactions continued until they formed iron in the core of the star. At this point, further nucleosynthesis would consume rather than produce energy, so gravity then caused the star to implode and form a dense stellar core known as a neutron star.

The exact means by which a massive explosion is produced after the implosion is complicated, and a subject of intense study, but eventually the infalling material outside the neutron star was transformed by further nuclear reactions as it was expelled outward by the supernova explosion.

Pre-Supernova Star: As it nears the end of its evolution, heavy elements produced by nuclear fusion inside the star are concentrated toward the center of the star. Illustration Credit: NASA/CXC/S. Lee

Chandra has repeatedly observed Cas A since the telescope was launched into space in 1999. The different datasets have revealed new information about the neutron star in Cas A, the details of the , and specifics of how the debris is ejected into space.

Explore further: A star explodes, turns inside-out

Related Stories

A star explodes, turns inside-out

March 29, 2012

( -- A new X-ray study of the remains of an exploded star indicates that the supernova that disrupted the massive star may have turned it inside out in the process. Using very long observations of Cassiopeia A ...

Search for stellar survivor of a supernova explosion

March 30, 2017

Astronomers have used the NASA/ESA Hubble Space Telescope to observe the remnant of a supernova explosion in the Large Magellanic Cloud. Beyond just delivering a beautiful image, Hubble may well have traced the surviving ...

Astrophysicists discover a star polluted by calcium

May 1, 2017

An international team of astrophysicists led by a scientist from the Sternberg Astronomical Institute of the Lomonosov Moscow State University has reported the discovery of a binary solar-type star inside supernova remnant ...

The dawn of a new era for Supernova 1987a (Update)

February 24, 2017

Three decades ago, astronomers spotted one of the brightest exploding stars in more than 400 years. The titanic supernova, called Supernova 1987A (SN 1987A), blazed with the power of 100 million suns for several months following ...

NuSTAR telescope takes first peek into core of supernova

February 19, 2014

( —Astronomers have peered for the first time into the heart of an exploding star in the final minutes of its existence. The feat by the high-energy X-ray satellite NuSTAR provides details of the physics of the ...

Recommended for you

Brown dwarf detected in the CoRoT-20 system

July 16, 2018

An international group of astronomers has discovered a new substellar object in the planetary system CoRoT-20. The newly identified object was classified as a brown dwarf due to its mass, which is greater than that of the ...

'X'-ploring the Eagle Nebula and 'Pillars of Creation'

July 13, 2018

The Eagle Nebula, also known as Messier 16, contains the young star cluster NGC 6611. It also the site of the spectacular star-forming region known as the Pillars of Creation, which is located in the southern portion of the ...

Observatories team up to reveal rare double asteroid

July 13, 2018

New observations by three of the world's largest radio telescopes have revealed that an asteroid discovered last year is actually two objects, each about 3,000 feet (900 meters) in size, orbiting each other.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.