NASA satellite tracks ozone pollution by monitoring its key ingredients

November 6, 2017, NASA's Goddard Space Flight Center
The top row of images show each region in 2005, which had abundant NOx in urban areas where human emissions are high, leading to systems where ozone formation was controlled by VOC amounts. As pollution controls were put into place on NOx emissions, by 2015, the systems in Europe, the United States, and East Asian urban areas became limited by NOx, meaning that further controls on NOx would help reduce ozone formation. With the industrial growth of the last decade, the results in China outside the major cities show an increase in areas transitioning to being controlled by VOC amounts. Credit: NASA

Ozone pollution near Earth's surface is one of the main ingredients of summertime smog. It is also not directly measurable from space due to the abundance of ozone higher in the atmosphere, which obscures measurements of surface ozone. New NASA-funded research has devised a way to use satellite measurements of the precursor gases that contribute to ozone formation to differentiate among three different sets of conditions that lead to its production. These observations may also assist air quality managers in assessing the most effective approaches to emission reduction programs that will improve air quality.

Unlike its presence at high altitude where ozone acts as Earth's sunscreen from harmful ultraviolet radiation, at low altitudes, ozone is a health hazard contributing to respiratory problems like asthma and bronchitis. It is formed through complex chemical reactions initiated by sunlight and involving two types of gases, (VOC) and nitrogen oxides (NOx). Both are represented in the study by a major gas of each type, the VOC formaldehyde and NO2, that are measureable from space by the Dutch-Finnish Ozone Monitoring Instrument aboard NASA's Aura satellite, launched in 2004.

"We're using satellite data to analyze the chemistry of ozone from space," said lead author Xiaomeng Jin at the Lamont-Doherty Earth Observatory at Columbia University in Palisades, New York. Their research was published in Journal of Geophysical Research: Atmospheres, a publication of the American Geophysical Union.

With a combination of computer models and space-based observations, she and her colleagues used the concentrations of ozone's precursor molecules to infer whether ozone production increases more in the presence of NOx, VOCs, or a mix of the two, for a given location. Their study regions focused on North America, Europe and East Asia during the summer months, when abundant sunlight triggers the highest rates of ozone formation. To understand their impact on ozone formation, Jin and her team investigated whether VOC or NOx was the ingredient that most limited ozone formation. If emissions of that molecule are reduced, then ozone formation will be reduced—critical information for managers.

"We are asking, 'If I could reduce either VOCs or NOx, which one is going to get me the biggest bang for my buck in terms of the amount of ozone that we can prevent from being formed in the lower atmosphere?'" said co-author and atmospheric chemist Arlene Fiore at Lamont-Doherty, who is also a member of NASA's Health and Air Quality Applied Sciences Team that partially funded this work and fosters collaboration between scientists and air quality managers.

The findings show that cities in North America, Europe and East Asia, are more often VOC-limited or in a transitional state between VOC and NOx-limited. In addition, the 12-year data record of satellite observations show that a location's circumstances can change. For instance, in 2005 New York City's ozone production during the warm season was limited by VOCs, but by 2015 it had transitioned to a NOx-limited system due to reduced NOx emissions resulting from controls put into place at both regional and national levels. This transition means that future NOx reductions will likely further decrease , said Jin.

Volatile organic compounds occur in high volume naturally, given off by some plants, including certain tree species. They can also arise from paint fumes, cleaning products, and pesticides, and are a by-product of in factories and automobiles. Nitrogen oxides are a byproduct of burning fossil fuels and are abundant in cities, produced by power plants, factories, and cars. Because VOCs have a large natural source during summer over the eastern United States, for example, emission reduction plans over the last two decades in this region have focused on NOx, which is overwhelmingly produced by human activities.

Space-based methods for monitoring chemistry complement surface-based measurements made by air quality management agencies. The view from space offers consistent coverage of broad areas, and provides data for regions that may not have ground stations.

Explore further: Oil and gas emissions a major contributor to bad ozone days

Related Stories

Oil and gas emissions a major contributor to bad ozone days

November 6, 2017

On certain days in 2014, oil and gas emissions made a big contribution to high summertime ozone levels in northeastern Colorado, according a new study led by CIRES and NOAA researchers. High concentrations of summertime ozone ...

Air quality measurements in the sky over Europe

August 9, 2017

It looks like a bucket list for city trips, but it's the current route of the HALO research aircraft. Until the end of July, atmosphere researchers from all over Germany will study air pollution above European conurbations. ...

Recommended for you

Arctic greening thaws permafrost, boosts runoff

October 17, 2018

A new collaborative study has investigated Arctic shrub-snow interactions to obtain a better understanding of the far north's tundra and vast permafrost system. Incorporating extensive in situ observations, Los Alamos National ...

Evidence of earliest life on Earth disputed

October 17, 2018

When Australian scientists presented evidence in 2016 of life on Earth 3.7 billon years ago—pushing the record back 220 million years—it was a big deal, influencing even the search for life on Mars.

Arctic ice sets speed limit for major ocean current

October 17, 2018

The Beaufort Gyre is an enormous, 600-mile-wide pool of swirling cold, fresh water in the Arctic Ocean, just north of Alaska and Canada. In the winter, this current is covered by a thick cap of ice. Each summer, as the ice ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.