Study of W Hydrae suggests condensed aluminum oxide dust plays key role in accelerating stellar wind

November 2, 2017 by Bob Yirka, Phys.org report

High spatial resolution images of AlO and 29SiO molecules around W Hya observed with ALMA. AlO molecules were only observed within three stellar radii (Rstar) whereas 29SiO was distributed in the accelerated wind beyond 5 Rstar without significant depletion.This strongly suggests that condensed aluminum oxide dust plays a key role in accelerating the stellar wind and in preventing the efficient formation of silicate dust around W Hydrae. Credit: Aki Takigawa
(Phys.org)—A team of researchers affiliated with several institutions in Japan has found evidence showing that condensed aluminum oxide dust surrounding the star W Hydrae plays a key role in accelerating the stellar wind. In their paper published on the open access site Science Advances, the team describes their study of the star and the gases that surround it.

As scientists look to the to understand the nature of the universe, they also seek answers regarding universal origins. The Big Bang, theory, for example, suggests how things might have started, but what processes led to the creation of atoms, for example? In this new effort, the researchers believe they may have found a source: W Hydrae, a star that is part of the Hydrae constellation and is classified as an (AGB) star—stars that are still evolving and are in the low to medium mass size. W Hydrae has approximately nine times the mass of our sun and is a popular object of study due to its brightness. Scientists have come to believe that the study of AGBs might offer clues regarding how the elements were created.

Using the Atacama Large Millimeter/submillimeter Array of telescopes, the researchers observed W Hydrae, one of the brightest stars as seen from Earth. The researchers found evidence of aluminum oxide in its outer shell—within three "stellar radii." The presence of the dust, the researchers suggest, might be a driver of stellar wind and perhaps a means of synthesizing atoms. In their theory, the aluminum oxide grows into grains and aggregates in the dust shell. The aggregates move more when struck by light from the star. As they move away from the star, they encounter silicate dust and continue to move away from the star, causing the (the continues flow of charged particles emitted from the star) to pick up. As part of this process, atoms such as silicon and oxygen may be formed. They also suggest the process prevents silicate dust from forming efficiently around the star.

Schematic illustration of dust formation and wind acceleration around W Hya. Aluminum oxide dust, which grows and piles up in the inner dust shell, and partially condensed silicate dust trigger the acceleration of the wind, which suppresses silicate formation around an aluminum oxide–rich star, W Hya. Credit: Aki Takigawa
High spatial resolution image of AlO and 29SiO molecules around W Hydrae observed with ALMA. Colors show emissions from AlO molecules (red) and 29SiO molecules and the star (yellow). Credit: ALMA (ESO/NAOJ/NRAO), Takigawa et al.

Explore further: ALMA spots possible formation site of icy giant planet

More information: Aki Takigawa et al. Dust formation and wind acceleration around the aluminum oxide–rich AGB star W Hydrae, Science Advances (2017). DOI: 10.1126/sciadv.aao2149

Abstract
Dust grains, formed around asymptotic giant branch (AGB) stars, are accelerated by stellar radiation to drive stellar winds, which supply freshly synthesized nuclides to the Galaxy. Silicate is the dominant dust species in space, but ~40% of oxygen-rich AGB stars are thought to have comparable amounts of aluminum oxide dust. Dust formation and the wind-driving mechanism around these oxygen-rich stars, however, are poorly understood. We report on the spatial distributions of AlO and 29SiO molecules around an aluminum oxide–rich M-type AGB star, W Hydrae, based on observations obtained with the Atacama Large Millimeter/submillimeter Array. AlO molecules were only observed within three stellar radii (Rstar), whereas 29SiO was distributed in the accelerated wind beyond 5 Rstar without significant depletion. This strongly suggests that condensed aluminum oxide dust plays a key role in accelerating the stellar wind and in preventing the efficient formation of silicate dust around W Hydrae.

Related Stories

ALMA spots possible formation site of icy giant planet

September 14, 2016

Astronomers found signs of a growing planet around TW Hydra, a nearby young star, using the Atacama Large Millimeter/submillimeter Array (ALMA). Based on the distance from the central star and the distribution of tiny dust ...

Methanol detected for first time around young star

May 25, 2017

Methanol, a key building block for the complex organic compounds that comprise life, has been detected for the first time in the protoplanetary disk of a young, distant star. This finding could help scientists better understand ...

Accretion around a young star

July 24, 2012

(Phys.org) -- The star TW Hydrae is located about 150 light-years from Earth in the direction of the constellation of Hydrae, the Water Snake. This star is relatively young, about 10 million years old, and has passed out ...

Pulsation-driven winds in giant stars

April 11, 2016

Nearly all stars have winds. The Sun's wind, which originates from its hot outer layer (corona), contains charged particles emitted at a rate equivalent to about one-millionth of the moon's mass each year. Some of these particles ...

Image: Hubble captures DI Cha star system

November 2, 2015

Two stars shine through the center of a ring of cascading dust in this image taken by the NASA/ESA Hubble Space Telescope. The star system is named DI Cha, and while only two stars are apparent, it is actually a quadruple ...

The death of a planet nursery?

September 19, 2016

The dusty disk surrounding the star TW Hydrae exhibits circular features that may signal the formation of protoplanets. LMU astrophysicist Barbara Ercolano argues, however, that the innermost actually points to the impending ...

Recommended for you

An exoplanet loses its atmosphere in the form of a tail

December 6, 2018

A new study led by scientists from the Instituto de Astrofísica de Canarias (IAC) reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field and ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1.7 / 5 (6) Nov 02, 2017
A much simpler consideration would involve acknowledging an electric field to accelerate the stellar/solar wind.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.