NASA's one-year mission investigates how space affects astronauts' functional performance

September 14, 2017 by Amy Blanchett
NASA test subject simulates opening a hatch door. Credit: NASA

Adapting to the microgravity environment of space changes the way your brain interprets sensory signals, decreases muscle strength and alters cardiovascular function. Astronauts will need to overcome these changes to perform critical mission tasks on a journey to Mars. Simple tasks on Earth such as exiting a vehicle becomes more crucial when stepping foot in an unfamiliar world. Maintaining balance control will be key to a successful mission.

NASA's Human Research Program wants to understand how spaceflight affects human physiological systems and functional performance to help identify the best countermeasures for astronauts in support of future deep space missions. Jacob Bloomberg, Ph.D., senior scientist at the Johnson Space Center, is investigating functional performance and physiological systems to determine how these changes can impact astronauts.

The goal of Bloomberg's One-Year Mission Functional Task Test investigation is to connect changes in physiological systems like brain, cardiovascular and muscle function to functional performance like obstacle avoidance during walking, ladder climbing and hatch opening. Astronauts are tested before spaceflight and after their return to Earth. Understanding how these changes occur leads to the development of countermeasures.

When Bloomberg compared the One-Year Mission preliminary results to six-month data, he found similar findings. Tasks that challenged , or systems (i.e. fall recovery, during walking, carrying objects) changed the most as a result of spaceflight. Tasks with reduced requirements for postural stability (i.e. manual manipulation of objects and tool use) showed little reduction in performance. These results from the One-Year Mission point to the importance of finding a solution for post-flight balance disturbances and subsequent impaired functional performance.

Test Subject Chris Miller maneuvers an obstacle course. This is part of the Functional Task Test that evaluates functional capability of astronauts in the Neuroscience Laboratory at NASA Johnson Space Center. Credit: NASA

Spaceflight may change the way the brain, heart and muscles operate together. It will be important to understand how to counteract these changes to enable astronauts to complete critical tasks. As NASA explores other worlds, it will be a true balancing act.

NASA senior scientist Jacob Bloomberg, Ph.D., compares One-Year Mission preliminary results to six-month data. Learn which functional tasks changed the most as a result of spaceflight. Credit: NASA

Explore further: Walk the line: NASA studies physical performance after spaceflight

Related Stories

'Balancing' the one-year mission risks

September 30, 2013

If you've ever stumbled out of bed in the middle of the night, fallen out of a yoga pose or had trouble "finding your legs" after hopping off a rollercoaster or a boat, then you know getting your balance can be challenging. ...

Recommended for you

NASA telescope studies quirky comet 45P

November 22, 2017

When comet 45P zipped past Earth early in 2017, researchers observing from NASA's Infrared Telescope Facility, or IRTF, in Hawai'i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial ...

Uncovering the origins of galaxies' halos

November 21, 2017

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

Cassini image mosaic: A farewell to Saturn

November 21, 2017

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.