Insights into atomic structure of next-generation superconductors

September 13, 2017, Australian Nuclear Science and Technology Organisation (ANSTO)
Insights into atomic structure of next-generation superconductors

Neutron diffraction at the Australian Centre for Neutron Scattering has clarified the absence of magnetic order and classified the superconductivity of a new next-generation of superconductors in a paper published in Europhysics Letters.

The iron-based nitride, ThFeAsN, which contains Th2N2 and FeAs2 layers, has been of considerable interest because unconventional superconductivity occurring at a temperature of 30 K. This material was of particular interest as the superconductivity was seen to arise without oxygen doping.

A large group of predominantly Chinese researchers, led by Prof Huiqian Luo from the Beijing National Laboratory for Condensed Matter Physics gathered diffraction measurements on the high intensity diffractometer WOMBAT, assisted by instrument scientists Dr Helen Maynard-Casely and Dr Guochu Deng based at the Australian Centre for Neutron Scattering. This enabled them to determine the of the compound over a large temperature range.

In similar types of materials, the onset of a superconducting state is thought to be associated with within the crystal structure. Earlier measurements had shown no magnetic ordering in the ThFeAsN material, and hence this neutron study was an opportunity to confirm this and search for other structural insights into the material's properties.

The lack of magnetic order was confirmed because no difference was found between the data sets at 6 K and 40 K. All of the observed reflections could be could be identified as having arisen from the atomic structure from 6K up to 300K – no magnetic reflections were identified.

Diffraction patterns over the temperature range from 300 K to 6 K also indicated there was no structural phase transition from tetragonal to orthorhombic in the crystal lattice.

The investigators reported that the lattice parameters continuously increased with temperature due to thermal expansion and a weak distortion in the tetrahedron possibly took place at 160 K. Details from the structure point to this distortion coming from the FeAs2 layers.

The close relationship between local of the FeAs4 tetrahedron and the superconducting temperature, suggested TheFeAsN is in a nearly optimised superconducting state.

This is different to many other discovered superconducting materials, which require tweaks in their chemistry to produce the highest critical .

The authors also surmised that the close distance of Fe-As would favour electron hopping, reducing electron correlations and orbital order, thereby providing a reasonable explanation for the absence of magnetic order, structural transition and resistivity anomaly.

Carrier density measurements indicated that ThFeAsN could already be doped by electrons, which are probably introduced by the N deficiency or O occupancy or the reduced valence of nitrogen. The self-doping effect could be responsible for the superconductivity and suppression of magnetic order.

Explore further: Scientists uncover the microscopic origin of a magnetic phase in iron-based superconductors

More information: Huican Mao et al. Neutron powder diffraction study on the iron-based nitride superconductor ThFeAsN, EPL (Europhysics Letters) (2017). DOI: 10.1209/0295-5075/117/57005

Related Stories

Peering at the crystal structure of lithium

June 23, 2017

Elemental metals usually form simple, close-packed crystalline structures. Though lithium (Li) is considered a typical simple metal, its crystal structure at ambient pressure and low temperature remains unknown.

Recommended for you

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Designer emulsions

November 15, 2018

ETH material researchers are developing a method with which they can coat droplets with controlled interfacial composition and coverage on demand in an emulsion in order to stabilise them. In doing so they are fulfilling ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.