Possible explanation for the galaxy's cosmic radiation

September 20, 2017, Spanish National Research Council
MAGIC telescopes, located at the Roque de los Muchachos Observatory, in La Palma (Canary Islands). Credit: IAC

Cassiopeia A is a famous supernova remnant, the product of a gigantic explosion of a massive star about 350 years ago. Although discovered in radio observations 50 years ago, we now know that its emitted radiation spans from radio through high-energy gamma rays. It is also one of the few remnants for which the birth date and the type of supernova are known. It was a type IIb, the result of a core collapse supernova explosion. The precise knowledge of its nature makes Cassiopeia A one of the most interesting and investigated objects in the sky, and in particular, the study of its connection with cosmic rays, subatomic particles that fill the galaxy with energies higher than anything achievable in laboratories on Earth.

The very high-energy part of the spectrum of Cassiopeia A results from cosmic rays (either electrons or protons) within the remnant. Until now, this range of energy could not be measured with sufficient precision to pinpoint its origin. Sensitive observations above 1 Tera-electronvolts (TeV) were required, but achieving them was daunting. An international team led by scientists from the Institute for Space Sciences and collaborators has finally achieved such observations with the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescope. The researchers recorded more than 160 hours of data between December 2014 and October 2016, revealing that Cassiopeia A is an accelerator of massive particles, mostly hydrogen nuclei (protons). However, even when those particles are 100 times more energetic than those in artificial accelerators, their is not high enough to explain the cosmic rays that fill our galaxy.

"Cassiopeia A is the perfect object to be a PeVatron, that is, an accelerator of particles up to PeV energies (1 PeV = 1.000 TeV). It is young, bright, with a shock wave expanding at great velocity and with very large magnetic fields that can accelerate cosmic rays to at least 100 or 200 teraelectronvolts," says Emma de Oña Wilhelmi, scientist of CSIC in the Institute for Space Sciences, "But contrary to what we expected, in Cassiopeia A, the particle energies do not reach more than a few tens of tera-electronvolts. At these energies, the radiation suddenly drops and the emission stops abruptly. Either the remnant cannot accelerate the particles to higher energies, which challenge our knowledge of shock acceleration, or maybe the fastest ones quickly escaped the shock, leaving only the slowest ones for us to observe," says Daniel Guberman, at the Institut de Fisica d"Altes Energies.

3-color X-ray image of the supernova remmant Cassiopeia A. Credit: NASA
"Those supernovae are natural accelerators of particles. Therefore, they are the perfect laboratory to study charged and plasma in conditions that are not possible in our labs in Earth," says Daniel Galindo at the University of Barcelona. "To understand the origin of the implies unveiling the origin of our own galaxy," concludes Razmik Mirzoyan, MAGIC spokesperson from the Max Planck Institute for Physics (MPP) in Munich (Germany).

The MAGIC telescopes are located at the Roque de los Muchachos Observatory, in La Palma (Canary Islands). MAGIC, a system of two 17m diameter Cherenkov telescopes, is currently one of the three major imaging atmospheric Cherenkov instruments in the world. It is designed to detect photons tens of billions to tens of trillions times more energetic than visible light. MAGIC also uses a novel technique to reduce the effect of the moonlight in the camera, allowing for observations during moderated moonlight nights.

Explore further: Astrophysicists explain the mysterious behavior of cosmic rays

More information: Monthly Notices of the Royal Astronomical Society (2017). DOI: 10.1093/mnras/stx2079

Related Stories

Stellar corpse sheds light on origin of cosmic rays

September 4, 2017

The origin of cosmic rays, high-energy particles from outer space constantly impacting on Earth, is among the most challenging open questions in astrophysics. Now new research published in the journal Monthly Notices of the ...

Fermi Telescope Closes on Source of Cosmic Rays (w/ Video)

February 16, 2010

(PhysOrg.com) -- New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding ...

Recommended for you

After a reset, Сuriosity is operating normally

February 23, 2019

NASA's Curiosity rover is busy making new discoveries on Mars. The rover has been climbing Mount Sharp since 2014 and recently reached a clay region that may offer new clues about the ancient Martian environment's potential ...

Study: With Twitter, race of the messenger matters

February 23, 2019

When NFL player Colin Kaepernick took a knee during the national anthem to protest police brutality and racial injustice, the ensuing debate took traditional and social media by storm. University of Kansas researchers have ...

Researchers engineer a tougher fiber

February 22, 2019

North Carolina State University researchers have developed a fiber that combines the elasticity of rubber with the strength of a metal, resulting in a tougher material that could be incorporated into soft robotics, packaging ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.