Technique for making microdroplet lenses

August 16, 2017 by Rainer Klose, Swiss Federal Laboratories for Materials Science and Technology
Cross sections (top row) and top view (bottom row) of the simulated near-field intensity within cyanine dye droplets of 500, 350, 250 and 70 nm on a glass substrate. Credit: Advanced Optical Materials / Wiley

Researchers are on the lookout for rapid, reliable and affordable switches for the opto-electronics of the future. An Empa team now presents a potential solution: dye droplets measuring just a few sub-micrometers in diameter.

Scientists from Empa's Laboratory for Functional Polymers are on the lookout for liquids that spread as evenly as possible on a surface for the production of OLEDs. However, the very same lab is also working on precisely the opposite: a liquid that is supposed to break up into as many as possible when applied to a surface. Each of these droplets forms a microlens when it dries. A whole field of these microlenses can influence beams of light in a specific way, which makes them extremely interesting for optic signal processing in computers and .

Cheap to produce

"We take advantage of the fact that the droplets organize themselves," says Jakob Heier, who is studying the optic properties of these microlenses. "This has a major economic advantage: we don't need any machines to make the microlenses; a spray nozzle does the trick." In the lab, however, the dye is not yet sprayed on; Heier and his colleagues produce the microlenses using spin-coating. The dye is placed in the center of a turntable and spreads across the entire area thanks to the centrifugal force.

Anyone who would like to understand exactly how these fields of microlenses behave in the light needs to delve deep into math. Heier talks about Fourier transforms and Kramers-Kronig relations, which help describe the properties of thousands of droplets in a single mathematical formula. "The mathematics behind it all might be 100 years old, but the insights we gain are up to the minute."

Components made of cyanine dye

Heier and his colleagues succeeded in demonstrating that a whole series of optic switch elements can be constructed from droplets of cyanine dye. The study was published in the journal Advanced Optical Materials in February 2017. The switch elements can specifically block or let through certain wavelengths. Heier uses the change in the dye's refraction index. What makes it all so exciting: by selecting different dyes and varying the size of the droplets, the properties of the switch can be tailored to the desired application.

For instance, phase gratings can be constructed from these microlenses – a popular tool in optoelectronics. This is able to divide beams of light into individual frequencies, without compromising the light's intensity. Hence, the signal losses remain low, less light energy is required and the components don't heat up as much. "With our observations and calculations, we've physically paved the way for these switches," says Heier. "Now I'm excited to see who uses this knowhow for the first real applications."

Explore further: Scientists make microscopes from droplets

More information: Nicolas A. Leclaire et al. Light Scattering Enhancement at the Absorption Edge in Dewetting Droplets of Cyanine Dyes, Advanced Optical Materials (2017). DOI: 10.1002/adom.201600903

Related Stories

Scientists make microscopes from droplets

March 10, 2017

Liquid droplets are natural magnifiers. Look inside a single drop of water, and you are likely to see a reflection of the world around you, close up and distended as you'd see in a crystal ball.

Tunable microlenses shine light on medical imaging

October 13, 2008

(PhysOrg.com) -- University of Wisconsin-Madison engineers have developed tunable liquid microlenses that can quickly scan images and record video. Integrated onto fiber-optic probes, the lenses further could reduce the invasiveness ...

Bouncing water droplets reveal small-scale beauty (w/ Video)

October 14, 2010

In the video below, scientists have captured the simple movements of water droplets on a superhydrophobic carbon nanotube surface. The video shows the water droplets as they bounce, slide, and roll across different structures ...

Physicists' prediction of gas 'droplets' confirmed

November 10, 2016

Ground-breaking theoretical work by University of Otago physics researchers showing that under certain conditions gases can form into stable droplets – as liquids do – has now been confirmed experimentally by scientists ...

Recommended for you

Gravitational wave detectors to search for dark matter

August 16, 2018

Gravitational wave detectors might be able to detect much more than gravitational waves. According to a new study, they could also potentially detect dark matter, if dark matter is composed of a particular kind of particle ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.