NASA instrument key to understanding solar powered planet arrives at Kennedy Space Center

August 7, 2017, NASA's Goddard Space Flight Center
TSIS-1 inside clean room at NASA's Kennedy Space Flight Center in Florida. Credit: Tom Sparn, TSIS LASP program manager

A new instrument that will monitor our planet's biggest power source, the Sun, arrived at NASA's Kennedy Space Center in Florida. It has a targeted November 2017 launch on a SpaceX Falcon 9 rocket to the International Space Station. The Total Solar and Spectral Irradiance Sensor (TSIS-1) instrument was built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP) for NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Scientists will use TSIS-1 to study the Sun's energy input to Earth. Specifically, it will measure both the total amount of light that falls on Earth, known as the total solar irradiance, and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance.

"We need to measure both because both affect Earth's climate," said Dong Wu, the TSIS-1 project scientist at NASA Goddard.

TSIS-1 will make these measurements with two sensors: the Total Irradiance Monitor and the Spectral Irradiance Monitor. These sensors advance previous measurements and are designed to see the tiny changes in solar irradiance, enabling scientists to study the Sun's natural influence on Earth's , atmospheric circulation, clouds and ecosystems.

Scientists use the measurements to quantify the variations in the Sun's total amount of energy. Satellites have captured a continuous record of the total solar energy input to Earth since 1978, and have seen tiny fluctuations in solar energy output over the years. Most scientists believe the 0.1 percent variation in the Sun's irradiance is too subtle to explain Earth's recent warming, but it's not impossible that long-term patterns proceeding over hundreds or thousands of years could cause more severe swings that could have profound impacts on climate. Scientists believe there could be a 100- or 200-year cycle of gradual heating up and cooling down periods for the Sun.

"We need to continue to monitor the Sun over longer periods during which the irradiance may change gradually but significantly," said Peter Pilewskie, TSIS lead mission scientist from LASP in Boulder, Colorado. "How the atmosphere responds to subtle changes in the Sun's output helps us distinguish between natural and human influences on climate."

Scientists also study the solar spectral irradiance, the distribution of the Sun's energy across its constituent wavelengths, because different wavelengths of light are absorbed by different parts of the atmosphere. For instance, the ozone layer is Earth's natural sunscreen and protects life from harmful ultraviolet radiation. TSIS-1 measurements of the Sun's ultraviolet radiation are critical to understanding the condition of this protective ozone layer.

Explore further: CU-Boulder team to build $34 million instrument package for environmental satellite

Related Stories

New solar instrument reaches orbit

November 21, 2013

An instrument that measures the sun's energy output is in orbit after it was launched last night on the U.S. Air Force's Space Test Program Satellite-3. The satellite was aboard a Minotaur I rocket that launched at 8:15 p.m. ...

SORCE satellite: A Decade in the Sun

April 1, 2013

NASA's Solar Radiation and Climate Experiment (SORCE) satellite has been providing data on the sun's irradiance for 10 years. SORCE measures electromagnetic radiation produced by the sun and the power per unit area of that ...

SORCE's solar spectral surprise

December 16, 2010

Two satellite instruments aboard NASA's Solar Radiation & Climate Experiment (SORCE) mission -- the Total Solar Irradiance Monitor (TIM) and the Solar Irradiance Monitor (SIM) -- have made daily measurements of the sun's ...

Recommended for you

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

New technique for finding life on Mars

January 18, 2018

Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific ...

North, east, south, west: The many faces of Abell 1758

January 18, 2018

Resembling a swarm of flickering fireflies, this beautiful galaxy cluster glows intensely in the dark cosmos, accompanied by the myriad bright lights of foreground stars and swirling spiral galaxies. A1758N is a sub-cluster ...

Meteoritic stardust unlocks timing of supernova dust formation

January 18, 2018

Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it can be a tool to study the history of our universe, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.