NASA instrument key to understanding solar powered planet arrives at Kennedy Space Center

August 7, 2017, NASA's Goddard Space Flight Center
TSIS-1 inside clean room at NASA's Kennedy Space Flight Center in Florida. Credit: Tom Sparn, TSIS LASP program manager

A new instrument that will monitor our planet's biggest power source, the Sun, arrived at NASA's Kennedy Space Center in Florida. It has a targeted November 2017 launch on a SpaceX Falcon 9 rocket to the International Space Station. The Total Solar and Spectral Irradiance Sensor (TSIS-1) instrument was built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP) for NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Scientists will use TSIS-1 to study the Sun's energy input to Earth. Specifically, it will measure both the total amount of light that falls on Earth, known as the total solar irradiance, and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance.

"We need to measure both because both affect Earth's climate," said Dong Wu, the TSIS-1 project scientist at NASA Goddard.

TSIS-1 will make these measurements with two sensors: the Total Irradiance Monitor and the Spectral Irradiance Monitor. These sensors advance previous measurements and are designed to see the tiny changes in solar irradiance, enabling scientists to study the Sun's natural influence on Earth's , atmospheric circulation, clouds and ecosystems.

Scientists use the measurements to quantify the variations in the Sun's total amount of energy. Satellites have captured a continuous record of the total solar energy input to Earth since 1978, and have seen tiny fluctuations in solar energy output over the years. Most scientists believe the 0.1 percent variation in the Sun's irradiance is too subtle to explain Earth's recent warming, but it's not impossible that long-term patterns proceeding over hundreds or thousands of years could cause more severe swings that could have profound impacts on climate. Scientists believe there could be a 100- or 200-year cycle of gradual heating up and cooling down periods for the Sun.

"We need to continue to monitor the Sun over longer periods during which the irradiance may change gradually but significantly," said Peter Pilewskie, TSIS lead mission scientist from LASP in Boulder, Colorado. "How the atmosphere responds to subtle changes in the Sun's output helps us distinguish between natural and human influences on climate."

Scientists also study the solar spectral irradiance, the distribution of the Sun's energy across its constituent wavelengths, because different wavelengths of light are absorbed by different parts of the atmosphere. For instance, the ozone layer is Earth's natural sunscreen and protects life from harmful ultraviolet radiation. TSIS-1 measurements of the Sun's ultraviolet radiation are critical to understanding the condition of this protective ozone layer.

Explore further: CU-Boulder team to build $34 million instrument package for environmental satellite

Related Stories

New solar instrument reaches orbit

November 21, 2013

An instrument that measures the sun's energy output is in orbit after it was launched last night on the U.S. Air Force's Space Test Program Satellite-3. The satellite was aboard a Minotaur I rocket that launched at 8:15 p.m. ...

SORCE satellite: A Decade in the Sun

April 1, 2013

NASA's Solar Radiation and Climate Experiment (SORCE) satellite has been providing data on the sun's irradiance for 10 years. SORCE measures electromagnetic radiation produced by the sun and the power per unit area of that ...

SORCE's solar spectral surprise

December 16, 2010

Two satellite instruments aboard NASA's Solar Radiation & Climate Experiment (SORCE) mission -- the Total Solar Irradiance Monitor (TIM) and the Solar Irradiance Monitor (SIM) -- have made daily measurements of the sun's ...

Recommended for you

Unconfirmed near-Earth objects

June 22, 2018

Near-Earth objects (NEOs) are small solar system bodies whose orbits sometimes bring them close to the Earth, potentially threatening a collision. NEOs are tracers of the composition, dynamics and environmental conditions ...

HESS J1943+213 is an extreme blazar, study finds

June 21, 2018

An international group of astronomers have carried out multi-wavelength observations of HESS J1943+213 and found evidence supporting the hypothesis that this gamma-ray source is an extreme blazar. The finding is reported ...

'Red nuggets' are galactic gold for astronomers

June 21, 2018

About a decade ago, astronomers discovered a population of small, but massive galaxies called "red nuggets." A new study using NASA's Chandra X-ray Observatory indicates that black holes have squelched star formation in these ...

The Rosetta stone of active galactic nuclei deciphered

June 21, 2018

A galaxy with at least one active supermassive black hole – named OJ 287 – has caused many irritations and questions in the past. The emitted radiation of this object spans a wide range – from the radio up to the highest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.