Researchers develop model for lighter armor

August 17, 2017, U.S. Army Research Laboratory
A simulation of a laboratory projectile impacting ceramic backed by polycarbonate showing damage in the ceramic. Credit: US Army Research Laboratory

The US Army Research Laboratory is working on developing new light-weight ceramic materials that resist fracture, and has teamed with researchers from the University of Florida to better understand exactly how these materials, which are suited for Soldier personal protection and Army systems, fracture, and how they can be further improved. They are focusing on failure through cracking; the material eventually disintegrates into a granular-like state through a process called comminution.

"While various ceramic possess high hardness, they fail easily when pulled apart. That is, when subjected to tensile forces. The amount of tension that these materials can withstand before failure, is a small fraction of the compression they can withstand. As a result, high velocity impact of bullets and fragments causes extensive cracking and fragmentation of the material, reducing its ability to fully utilize its superior hardness to resist complex stress states generated by the impact event," explained Dr. Sikhanda Satapathy, of ARL's Soldier Protection Sciences Branch.

Traditionally, the relationship between the granular material's ability to withstand compression and its ability to resist shearing deformation, which causes material to change shape has been described by the Mohr-Coulomb . This model approximates the material's resistance to shearing deformation (shear strength) as a linear function of applied pressure. In reality, the shear strength does not increase linearly with pressure and will saturate at high pressures.

The UF researchers developed a new model that describes the granular material response more accurately by studying the stress state at which a variety of ceramics fail as reported in the literature by various research teams.

The ARL and the UF team collaborated to employ this improved granular response model in conjunction with a dynamic cavity expansion modeling framework to capture the response of ceramics to the complex impact-induced stress state that includes compression, tension and shear. The dynamic cavity expansion modeling framework uses the pressure required to expand a cavity in an intact material to characterize its ability to resist deep penetration. This pressure, of course, is dependent on how the material responds to compression, tension and shear forces. Due to the applicability of this new model to a broad class of ceramics, the need for expensive experiments to characterize penetration response is significantly reduced. The new penetration model improves the understanding of how brittle ceramic responds to high impact stress by fracturing and comminuting to granular like material, and increases modeling ability of penetration events.

A side image of a laboratory projectile impacting a ceramic disk backed by polycarbonate captured using high speed cameras. Credit: US Army Research Laboratory

The improved model has been shown to better predict the resistance of a wide range of ceramic targets when shot at by a long-rod projectiles at velocities up to 3km/s. The important material parameters for penetration performance of a ceramic target have been identified through this collaborative effort, which will guide how the failure processes in ceramic can be controlled through improved material design or through a multi-materials systems approach.

"Understanding the mechanics of material response to projectile impact generated stress conditions is crucial in this research," Satapathy said. The research will appear in the International Journal of Solids and Structures.

The rear surface of the ceramic disk viewed through the polycarbonate backer showing the failure of a ceramic disk as a result of impact by a laboratory projectile. Credit: US Army Research Laboratory

Explore further: From solid to liquid and back again

More information: Salil Bavdekar et al, An improved dynamic expanding cavity model for high-pressure and high-strain rate response of ceramics, International Journal of Solids and Structures (2017). DOI: 10.1016/j.ijsolstr.2017.07.014

Related Stories

Observing fracture in stressed materials

July 24, 2017

Ever wondered, while cruising at 36,000 feet over the Atlantic, what would happen if a piece of satellite, asteroid, or other debris collided with your aircraft?

Here's a tip: Indented cement shows unique properties

July 19, 2017

Rice University scientists have determined that no matter how large or small a piece of tobermorite is, it will respond to loading forces in precisely the same way. But poking it with a sharp point will change its strength.

Breakthrough achieved in ceramics 3D printing technology

January 4, 2016

Researchers at HRL Laboratories, LLC, have achieved a new milestone in 3D printing technology by demonstrating an approach to additively manufacture ceramics that overcomes the limits of traditional ceramic processing and ...

Scientists create a ceramic resistant to extreme temperatures

August 22, 2016

Physicists and technicians of the TSU and Institute of Strength Physics and Materials Science SB RAS are developing experimental samples of ceramics resistant to extreme temperatures. The scientists aim to invent a material ...

Recommended for you

New battery gobbles up carbon dioxide

September 21, 2018

A new type of battery developed by researchers at MIT could be made partly from carbon dioxide captured from power plants. Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which ...

Scientists solve the golden puzzle of calaverite

September 21, 2018

Scientists from Russia and Germany have shed light on the crystalline structure of calaverite, foretelling the existence of a new gold compound previously unknown to chemists. The results of their study were published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.