Running out of gas: Gas loss puts breaks on stellar baby boom

August 2, 2017, National Institutes of Natural Sciences
Gas rich galaxies detected with ALMA are shown in red and marked with circles. Most gas rich galaxies are located in the outer part, not the center, of the galaxy cluster (around the center of the image). Credit: ALMA (ESO/NAOJ/NRAO), Hayashi et al., the NASA/ESA Hubble Space Telescope

Understanding the history of star formation in the Universe is a central theme in modern astronomy. Various observations have shown that the star formation activity has varied through the 13.8 billion-year history of the Universe. The stellar birthrate peaked around 10 billion years ago, and has declined steadily since then. However, the cause of the declining stellar birthrate is still not well understood.

"Aiming to investigate what suppresses the activity, we focused on the environment around the galaxies," said Masao Hayashi at the National Astronomical Observatory of Japan (NAOJ).

Hayashi and his colleagues observed the galaxy XMMXCS J2215.9-1738 located 9.4 billion light-years away with the Atacama Large Millimeter/submillimeter Array (ALMA). Because it takes time for the light from distant objects to reach us, observing far-away galaxies shows us what the Universe looked like when the light was emitted. In this case, the light from XMMXCS J2215.9-1738 was emitted 9.4 billion years ago, which is around the time that the stellar birthrate peaked. In fact, previous observations with NAOJ's Subaru Telescope revealed that many of the galaxies in the cluster are actively forming .

ALMA detected radio signals emitted from in 17 of the galaxies in the cluster. This is a record-high number for the detection of gas-rich galaxies at such a distance. Interestingly, the gas-rich galaxies detected with ALMA are located towards the outer part of the galaxy cluster, not in the center. This is the first time ever that such a location differentiation has been found in a galaxy cluster 10 billion light-years away.

The team assumes that the gas-rich galaxies detected with ALMA are in an intermediate step in the process of becoming members of the cluster. As new member galaxies pass through the hot gas filling the cluster, cold gas in the galaxies is stripped away by the hot gas. Active star formation consumes what little gas survives in the galaxies. As the cold gas needed to make stars runs out, star formation stops.

Actually, there are some galaxies with active star formation at the central part of the cluster. The team suggests that they are rather evolved, old members of the cluster consuming the last of their gas to form stars.

"Recent observational and theoretical studies show that the distribution of gas is key to understanding the evolution of galaxies," explains Hayashi. "Our observations provide robust statistics showing that a number of gas-rich galaxies are located in the outer part of a . With this result we have opened a future path for revealing the evolutionary process of in galaxy clusters."

These observation results were published as Hayashi et al. "Evolutionary Phases of Gas-rich Galaxies in a Galaxy Cluster at z = 1.46" in the Astrophysical Journal Letters in May 2017.

Explore further: Scientists get best measure of star-forming material in galaxy clusters in early universe

More information: Masao Hayashi et al, Evolutionary Phases of Gas-rich Galaxies in a Galaxy Cluster at z = 1.46, The Astrophysical Journal (2017). DOI: 10.3847/2041-8213/aa71ad

Related Stories

Neutral hydrogen gas in galaxy clusters

September 9, 2015

Most galaxies are members of a cluster, a grouping of several to thousands of galaxies. Our Milky Way, for example, is a member of the "Local Group," a set of about fifty galaxies whose other large member is the Andromeda ...

A lot of galaxies need guarding in this NASA Hubble view

May 4, 2017

Much like the eclectic group of space rebels in the upcoming film Guardians of the Galaxy Vol. 2, NASA's Hubble Space Telescope has some amazing superpowers, specifically when it comes to observing innumerable galaxies flung ...

Star formation in distant galaxy clusters

February 15, 2016

The first stars appeared about one hundred million years after the big bang, and ever since then stars and star formation processes have lit up the cosmos, producing heavy elements, planets, black holes, and arguably all ...

Galaxy cluster discovered at record-breaking distance

August 31, 2016

A new record for the most distant galaxy cluster has been set using NASA's Chandra X-ray Observatory and other telescopes. This galaxy cluster may have been caught right after birth, a brief, but important stage of evolution ...

Recommended for you

Three 'super-Earths' orbiting a cool dwarf star discovered

January 23, 2018

Using NASA's prolonged Kepler mission, known as K2, astronomers have found three new "super-Earth" exoplanets. The newly detected alien worlds orbit the cool dwarf star designated LP415-17. The finding is reported January ...

Scientist proposes new definition of a planet

January 23, 2018

Pluto hogs the spotlight in the continuing scientific debate over what is and what is not a planet, but a less conspicuous argument rages on about the planetary status of massive objects outside our solar system. The dispute ...

Dust storms linked to gas escape from Martian atmosphere

January 23, 2018

Some Mars experts are eager and optimistic for a dust storm this year to grow so grand it darkens skies around the entire Red Planet. This type of phenomenon in the environment of modern Mars could be examined as never before ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tuxford
1 / 5 (1) Aug 02, 2017
Our observations provide robust statistics showing that a number of gas-rich galaxies are located in the outer part of a galaxy cluster.

Because the outer parts contain many older, more evolved galaxies, having grown from within with larger more active cores ejecting newly formed gas therefrom. The source of the gas is continuous from within the core, not from some fabled magic moment formed in a Huge Bang. As the newly birthed galaxies diverge from the central parent galaxy, growing all the while, they eventually grow even more active, producing more gas therein, then observed as gas-rich, rather than gas-poor, leaving the merger maniacs even more confused. Still, they maintain the fantasy in their logic-poor minds.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.