Searching for invisible particles with the ATLAS Experiment

July 27, 2017
Figure 1: Measured data compared with the prediction from the Standard Model (solid red line), and from the Standard Model plus a variety of new invisible phenomena near the limit of ATLAS sensitivity (dotted/dashed lines). Credit: ATLAS Collaboration/CERN

As the Large Hadron Collider (LHC) smashes protons at a centre-of-mass energy of 13 TeV, it creates a rich assortment of particles that are identified through the signature of their interactions with the ATLAS detector. But what if the collider produces particles that travel through ATLAS without interacting? These "invisible particles" may provide the answers to some of the greatest mysteries in physics.

One example is dark matter, which appears to make up 85 percent of the mass in the universe, but has not yet been conclusively identified. Scientists infer its existence through astrophysical observations, including galaxy formation and gravitational lensing. However, they know more about what it isn't than what it is. There is no single theory of dark matter; different predictions have different implications for its properties and how it interacts.

The invisible produced in LHC collisions carry away energy, resulting in an apparent imbalance in the energy/momenta of the observed visible particles. Theories predict that if the invisible particles exist, more events with large imbalance and other distinctive patterns of visible particles could be detected by the ATLAS Experiment. Comparing the number of such events predicted by to the number of events observed in the detector is a way of searching for invisible particles indirectly.

While shown to be a successful approach, there are limitations. What if the of dark matter are wrong? What if an entirely different phenomenon is the cause of invisible particles? Currently, when theoretical models are shown to be incorrect, it can be difficult and time-consuming to re-use the data to test new models. To do so requires an understanding of how these particles were recorded in the detectors, how the events were selected, and how the Standard Model processes that mimic these particle patterns were modeled.

Figure 2: Region of Dark Matter and mediator particle masses actually excluded (up to the solid purple line) and expected to be excluded (up to the green solid line) with this measurement. Dotted grey lines show previous results from a comparable dedicated search. Credit: ATLAS Collaboration/CERN

ATLAS physicists have developed a new measurement-led approach, which is designed to be detector-independent and allows for easy re-interpretation of the data in future. In this approach, a quantity Rmiss is defined, which is sensitive to the production rate and properties of any invisible particle(s). This quantity is measured versus various properties of the collision events, including the amount of momentum imbalance and the energy/momenta of the visible particles. The value of this quantity along with changes in these measured properties is found to provide sensitivity to invisible particles. Known decays of Z bosons produced in LHC collisions into invisible neutrinos mean this quantity is non-zero, even in the absence of a new invisible phenomenon. This quantity is carefully corrected for detector inefficiencies, leaving a measurement free from experimental bias and independent of any new physics hypothesis (Figure 1). Any physicist can then easily compare the predictions of their against this measurement.

To demonstrate the new , the measurement is used to test three distinctly different theoretical models of dark , where it is produced either (1) via the strong force, (2) through the decays of Higgs bosons, or (3) via the electroweak force. No evidence of is observed and so ATLAS is able to place stringent constraints on these theories (Figure 2). The constraints are competitive with existing approaches that aim to test these specific theories and complementary to measurements from space-based indirect detection experiments.

Explore further: Chasing invisible particles at the ATLAS Experiment

More information: Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in pp collisions at 13 TeV using the ATLAS detector (arXiv: 1707.03263):

Related Stories

Chasing invisible particles at the ATLAS Experiment

July 20, 2017

Cosmological and astrophysical observations based on gravitational interactions indicate that the matter described by the Standard Model of particle physics constitutes only a small fraction of the entire known universe. ...

The ATLAS Experiment's quest for the lost arc

March 28, 2017

Nature has surprised physicists many times in history and certainly will do so again. Therefore, physicists have to keep an open mind when searching for phenomena beyond the Standard Model. 

Recommended for you

New technique promises tunable laser devices

September 19, 2017

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a phenomenon similar to an effect observed in circular galleries, such ...

Nonlinear physics bridges thoughts to sounds in birdsong

September 19, 2017

The beautiful sound of birdsongs emerging from the trees is a wonderful example of how much nature can still teach us, even as much about their origins are still mysterious to us. About 40 percent of bird species learn to ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.