New route to molecular wires suitable for use in miniature electronics

June 14, 2017, Agency for Science, Technology and Research (A*STAR), Singapore
New route to molecular wires suitable for use in miniature electronics
A two-step synthesis of molecular wires was studied using molecular modeling. Credit: Reprinted with permission from Ref 1. Copyright 2016 American Chemical Society

Consumer demand continually pushes the electronics industry to design smaller devices. Now researchers at A*STAR have used a theoretical model to assess the potential of electric wires made from polymer chains that could help with miniaturization.

As conventional silicon-integrated circuits reach their lower size limit, new concepts are required such as molecular electronics—the use of electronic components comprised of . Shuo-Wang Yang at A*STAR Institute of High Performance Computing together with his colleagues and collaborators, are using computer modeling to design made of polymer chains.

"It has been a long-standing goal to make conductive molecular wires on traditional semiconductor or insulator substrates to satisfy the ongoing demand miniaturization in electronic devices," explains Yang.

Progress has been delayed in identifying molecules that both conduct electricity and bind to substrates. "Structures with functional groups that facilitate strong surface adsorption typically exhibit poor electrical conductivity, because charge carriers tend to localize at these groups," he adds.

Yang's team applied density functional theory to a two-step approach for synthesizing linear polymer chains on a silicon surface1,2. "This theory is the best simulation method for uncovering the mechanism behind chemical reactions at atomic and electronic levels. It can be used to predict the reaction pathways to guide researchers," says Yang.

The first step is the self-assembled growth of single monomers on to the silicon surface. Yang's team studied several potential monomers including, most recently, a thiophene substituted alkene1 and a symmetrical benzene ring with three alkynes attached2. The second step is the polymerization of the tethered monomers by adding a radical to the system.

According to the calculations, these tethered polymers are semiconductors in their natural state. "We introduced some holes, such as atomic defects, to the wires to shift the Fermi levels and make them conductive," Yang explains.

The team then studied the electron band structures of each component before and after tethering and polymerization; finding little charge transfer between the molecular wires and the silicon surfaces. "The surface-grafted polymers and underlying substrates seem independent of each other, which is an ideal model of a conductive on a traditional semiconductor substrate," says Yang.

"Our finding provides a theoretical guide to fabricating ideal molecular wires on traditional semiconducting surfaces," he adds. The team is plans to extend their work to study 2D analogs of these 1D that could work as a metallic layer in molecular electronic devices.

Explore further: Rapid synthesis of ring-shaped molecules offers a cheap route to a plethora of polymers

More information: Xiaojing Yao et al. How to Fabricate a Surface-Grafted Polythiophene on H-Si(100)2×1 Surface via Self-Assembling and in Situ Surface Polymerization: A Theoretical Guide, The Journal of Physical Chemistry C (2016). DOI: 10.1021/acs.jpcc.6b08389

Xiaojing Yao et al. Theoretical study on the self-assembly of 1,3,5-triethynylbenzene on Si(100)2 × 1 and in situ polymerization via reaction with CO to fabricate a single surface-grafted polymer, J. Mater. Chem. C (2017). DOI: 10.1039/c7tc00678k

Related Stories

Single polymer chains as molecular wires

February 27, 2009

The research team of Leonhard Grill at Freie Universität Berlin - in collaboration with the synthetic chemistry group of Stefan Hecht from Humboldt University of Berlin and the theoretical physics group of Christian ...

One step towards faster organic electronics

September 9, 2015

For years we have believed that ordered polymer chains increase the conductivity of plastic. And a new generation of polymers has been developed. It is true that these new polymers are more conductive, but for completely ...

An advance toward ultra-portable electronic devices

July 20, 2011

Scientists are reporting a key advance toward the long-awaited era of "single-molecule electronics," when common electronic circuits in computers, smart phones, audio players, and other devices may shrink to the size of a ...

Metal-organic frameworks used as looms

February 15, 2017

Researchers of Karlsruhe Institute of Technology (KIT) have made major progress in the production of two-dimensional polymer-based materials. To produce cloths from monomolecular threads, the scientists used SURMOFs, i.e. ...

Recommended for you

Carbon fuels go green for renewable energy

December 18, 2018

For decades, scientists have searched for effective ways to remove excess carbon dioxide emissions from the air, and recycle them into products such as renewable fuels. But the process of converting carbon dioxide into useful ...

Data storage using individual molecules

December 17, 2018

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules ...

Progress in super-resolution microscopy

December 17, 2018

Going deeper and deeper into cells with the microscope; imaging the nucleus and other structures more and more accurately; getting the most detailed views of cellular multi-protein complexes: All of these are goals pursued ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.