Hubble's tale of two exoplanets: Nature vs. nurture

June 5, 2017 by Ray Villard, NASA's Goddard Space Flight Center
This diagram compares Hubble Space Telescope observations of two "hot Jupiter"-class planets orbiting very closely to different sunlike stars. Astronomers measured how light from each parent star is filtered through each planet's atmosphere. HAT-P-38 b did have a water signature indicated by the absorption-feature peak in the spectrum. This is interpreted as indicating the upper atmosphere is free of clouds or hazes. WASP-67 b, has a flat spectrum that lacks any water-absorption feature, suggesting most of the planet's atmosphere is masked by high-altitude clouds. Credit: Artwork: NASA, ESA, and Z. Levy (STScI); Credit: Science: NASA, ESA, and G. Bruno (STScI)

Is it a case of nature versus nurture when it comes to two "cousin" exoplanets? In a unique experiment, scientists used NASA's Hubble Space Telescope to study two "hot Jupiter" exoplanets. Because these planets are virtually the same size and temperature, and orbit around nearly identical stars at the same distance, the team hypothesized that their atmospheres should be alike. What they found surprised them.

Lead researcher Giovanni Bruno of the Space Telescope Science Institute in Baltimore, Maryland, explained, "What we're seeing in looking at the two atmospheres is that they're not the same. One planet—WASP-67 b—is cloudier than the other—HAT-P-38 b. We don't see what we're expecting, and we need to understand why we find this difference."

The team used Hubble's Wide Field Camera 3 to look at the ' spectral fingerprints, which measure chemical composition. "The effect that clouds have on the spectral signature of water allows us to measure the amount of clouds in the atmosphere," Bruno said. "More clouds mean that the water feature is reduced." The teams found that for WASP-67 b there are more clouds at the altitudes probed by these measurements.

"This tells us that there had to be something in their past that is changing the way these planets look," said Bruno.

Today the planets whirl around their yellow dwarf stars once every 4.5 Earth days, tightly orbiting their closer than Mercury orbits our sun. But in the past, the planets probably migrated inward toward the star from the locations where they formed.

This diagram compares Hubble Space Telescope observations of two "hot Jupiter"-class planets orbiting very closely to different sunlike stars. Astronomers measured how light from each parent star is filtered through each planet's atmosphere. HAT-P-38 b did have a water signature indicated by the absorption-feature peak in the spectrum. This is interpreted as indicating the upper atmosphere is free of clouds or hazes. WASP-67 b, has a flat spectrum that lacks any water-absorption feature, suggesting most of the planet's atmosphere is masked by high-altitude clouds. Credit: Artwork: NASA, ESA, and Z. Levy (STScI); Credit: Science: NASA, ESA, and G. Bruno (STScI)

Perhaps one planet formed differently than the other, under a different set of circumstances. "You can say it's nature versus nurture," explains co-investigator Kevin Stevenson. "Right now, they appear to have the same physical properties. So, if their measured composition is defined by their current state, then it should be the same for both planets. But that's not the case. Instead, it looks like their formation histories could be playing an important role."

The clouds on these hot, Jupiter-like gas giants are nothing like those on Earth. Instead, they are probably alkali , composed of molecules such as sodium sulfide and potassium chloride. The average temperature on each planet is more than 1,300 degrees Fahrenheit.

The exoplanets are tidally locked, with the same side always facing the parent star. This means they have a very hot day-side and a cooler night-side. Instead of sporting multiple cloud bands like Jupiter does, each probably has just one broad equatorial band that slowly moves the heat around from the day-side to the night-side.

The team is just beginning to learn what factors are important in making some exoplanets cloudy and some clear. To better understand what the planets' pasts may have been, scientists will need future observations with Hubble and the soon-to-be-launched James Webb Space Telescope.

The team's results were presented on June 5 at the 230th meeting of the American Astronomical Society in Austin, Texas.

Explore further: Hubble reveals diversity of exoplanet atmosphere: Largest ever comparative study solves missing water mystery

Related Stories

Cloudy days on exoplanets may hide atmospheric water

June 8, 2016

Water is a hot topic in the study of exoplanets, including "hot Jupiters," whose masses are similar to that of Jupiter, but which are much closer to their parent star than Jupiter is to the sun. They can reach a scorching ...

Cloudy nights, sunny days on distant hot Jupiters

October 18, 2016

The weather forecast for faraway, blistering planets called "hot Jupiters" might go something like this: Cloudy nights and sunny days, with a high of 2,400 degrees Fahrenheit (about 1,300 degrees Celsius, or 1,600 Kelvin).

Hot Jupiter KELT-16b offers unique opportunity for research

March 21, 2017

(Phys.org)—A large international team of researchers has found that a hot Jupiter called KELT-16b is likely to offer a unique opportunity for research for many years to come. In their paper published in The Astronomical ...

Recommended for you

New research challenges existing models of black holes

January 19, 2018

Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), has collaborated on a new study that expands the scientific community's understanding of black holes in our galaxy ...

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

New technique for finding life on Mars

January 18, 2018

Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.