New avenue for the large-scale synthesis of Janus particles

New avenue for the large-scale synthesis of 'God' Janus particles
The emulsion interfacial polymerization mechanism for producing Janus particles. Credit: Dr. FAN Junbing

Chinese researchers have developed an emulsion interfacial polymerization method to fabricate Janus particles exhibiting chemical and topological anisotropy. The results were published in the journal Science Advances in an article titled "A general strategy to synthesize chemically and topologically anisotropic Janus particles."

Polymer particle materials have a notable effect on daily life, largely due to the topology and surface chemistry of . Emulsion is a traditionally leading synthesis technique for . However, it usually produces due to surface tension, posing a challenge for fine-tuning the topology and chemistry of particles.

To overcome the limitation of surface tension, researchers from the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences recently developed a general interfacial polymerization approach to synthesizing a large variety of Janus particles with controllable topological and chemical anisotropy. In the study, they chose to use a typical oil-in-water emulsion system—styrene (St) and divinyl benzene (DVB) in water emulsion—into which hydrophilic monomers (e.g., acrylic acid (AA) or acrylamide (AM)) were introduced as anchoring molecules. The polymerization was initially designed to occur inside an oil droplet.

New avenue for the large-scale synthesis of 'God' Janus particles
The synthesis and characterization of the Janus particles. Credit: Dr. FAN Junbing

The researchers found that a particle nucleus could be produced inside oil droplets and the particle nucleus would move toward the oil/water interface. The hydrophilic anchoring monomers in the external water phase could then contact the particle nucleus and be initiated to polymerize, triggering interfacial anchoring polymerization. On the interface, based on the principle of equal chemical potential at equilibrium, preferential copolymerization of AA, St and DVB occurred along the interface in two directions, resulting in the formation of crescent-moon shaped Janus particles.

The researchers' theoretical simulation consistently suggested preferential growth, similar to what they obtained in the experiment. This novel method will significantly expand the utility of Janus particles, creating new opportunities in a wide variety of applications, ranging from the environment to health, especially in those involving oil-water separation and biological detection.

The approach can produce Janus particles with anisotropic topologies and amphiphilicity (Fig.2). The researchers' emulsion polymerization approach produced approximately 5 g of uniform Janus particles in one batch, providing an effective way to synthesize Janus particles on a large scale.

The technique can be used for polymerizing vinyl monomers, including positively charged, neutrally charged and negatively charged ones, greatly enriching the community of Janus particles. This method can also be expanded to large-area fabrication of two-dimensional Janus film actuators.

More information: Science Advances (2017). DOI: 10.1126/sciadv.1603203

Journal information: Science Advances

Citation: New avenue for the large-scale synthesis of Janus particles (2017, June 30) retrieved 22 June 2024 from https://phys.org/news/2017-06-avenue-large-scale-synthesis-janus-particles.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Universal stabilisation

9 shares

Feedback to editors