A&A special issue: The VLA-COSMOS 3 GHz large project

June 13, 2017
Radio color image of an area of the COSMOS field containing several large radio galaxies.An image of the VLA is overlaid. Credit: Astronomy & Astrophysics (VLA image courtesy of NRAO/AUI)

Astronomy & Astrophysics is publishing a series of six articles presenting the results of the VLA-COSMOS 3 GHz Large Project. Led by researchers at the University of Zagreb, the team used the Karl G. Jansky Very Large Array (VLA) telescope to observe a two square degree patch of sky called the COSMOS field, for a duration of 384 hours. The astronomers obtained one of the clearest (highest angular resolution) and deepest (most sensitive) radio images ever produced over such a large region of the sky. In the radio ''skymap'', the team detected nearly 11000 galaxies. The new radio data have been combined with optical, infrared, and X-ray observations from worldwide leading telescopes.

Radio light is not blocked by the large clouds of interstellar dust that often resides in galaxies. This means that radio waves can be used to detect newborn within galaxies, as these stars are hidden at other wavelengths. The astronomers used the new to examine how the amount of radio light coming from a galaxy relates to the rate at which the galaxy is forming new stars. They also studied how this rate has changed over the history of the Universe. They found that galaxies produced the most stars when the Universe was about 2.5 billion years old, a fifth of its current age. During this period, about a quarter of all newborn stars were being created in . The astronomers also found that 15-20% more star formation was occurring in galaxies in the early Universe than was previously thought. This means that dust clouds are indeed likely to be hiding many .

The new radio survey has also provided a unique insight into galaxies containing actively growing supermassive in their centers. These galaxies are called active galactic nuclei (AGN). Matter orbiting around and falling into the black hole can release huge amounts of energy. Using the new radio data, the astronomers discovered more than 1000 AGN that appear to be "normal" galaxies at every other wavelength. Only their radio emission signatures betray their hidden black hole activity. These radio-detected AGN are particularly interesting as they may represent a population of AGN that can influence the eventual fate of their . Physical processes associated with the feeding supermassive black hole may heat the gas in and around the galaxy, preventing the formation of new stars and halting the runaway growth of galaxies. The astronomers compared the AGN heating process assumed in cosmological simulations to what they detected in the new radio data. They found a strong similarity between the two. The quality of the new data allowed this test to be conducted out to a cosmic time at which the Universe was only about 2.5 billion years old.

The scientific findings of this new radio survey are important because they give more information about how and why have evolved since they were formed after the big bang up to the present day. This survey will also serve as the basis for large-scale, next-generation radio surveys, including the upcoming VLA Sky Survey (VLASS) and the planned surveys that will use the international Square Kilometer Array (SKA) telescope.

Enlarged images from the VLA-COSMOS 3 GHz Large Project. The mosaic contains images of large radio galaxies (top nine panels) and of compact radio objects (bottom panel). Credit: Astronomy & Astrophysics

Explore further: Understanding star-forming galaxies

More information: www.aanda.org/component/toc/?task=topic&id=752

Related Stories

Understanding star-forming galaxies

June 5, 2017

The more stars a typical spiral galaxy contains, the faster it makes new ones. Astronomers call this relatively tight correlation the "galaxy main sequence." The main sequence might be due simply to the fact that galaxies ...

Recommended for you

Bright areas on Ceres suggest geologic activity

December 13, 2017

If you could fly aboard NASA's Dawn spacecraft, the surface of dwarf planet Ceres would generally look quite dark, but with notable exceptions. These exceptions are the hundreds of bright areas that stand out in images Dawn ...

Stellar nursery blooms into view

December 13, 2017

The OmegaCAM camera on ESO's VLT Survey Telescope has captured this glittering view of the stellar nursery called Sharpless 29. Many astronomical phenomena can be seen in this giant image, including cosmic dust and gas clouds ...

New eruptions detected in two luminous blue variables

December 12, 2017

(Phys.org)—Astronomers report the detection of new eruptions in two luminous blue variables, known as R 40 and R 110, located in the Magellanic Clouds. The finding, presented December 5 in a paper published on the arXiv ...

Juno probes the depths of Jupiter's great red spot

December 12, 2017

Data collected by NASA's Juno spacecraft during its first pass over Jupiter's Great Red Spot in July 2017 indicate that this iconic feature penetrates well below the clouds. Other revelations from the mission include that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.