Two new Saturn-mass exoplanets discovered

May 8, 2017 by Tomasz Nowakowski, Phys.org report

Light curve of OGLE-2013-BLG-0132. The inset shows the enlargement of the caustic crossing parts of the light curve. The lower panel shows the residuals from the best-fit model. Credit: Mróz et al., 2017.
(Phys.org)—An international team of astronomers has detected two new giant alien worlds circling distant stars. The newly found planets are estimated to be as massive as Saturn and are orbiting M dwarfs beyond the snow line. The findings were presented May 2 in a paper published online on the arXiv pre-print server.

The were discovered by researchers working as part of the Optical Gravitational Lensing Experiment (OGLE) group and the Microlensing Observations in Astrophysics (MOA) collaboration. OGLE uses the 1.3-m Warsaw Telescope located at Las Campanas Observatory in Chile, while MOA utilizes the 1.8-m MOA-II telescope at the Mount John University Observatory, located in New Zealand. The main goal of these two microlensing surveys is to study the planet formation around late-type stars.

Gravitational microlensing is an invaluable method of detecting new extrasolar planets circling their parent stars relatively closely. This technique is sensitive to planets orbiting beyond the so-called "snow line" around relatively faint host stars like M dwarfs or brown dwarfs. It is a location in the proto-planetary disk where the water ice may condense and where are believed to be formed. Therefore, understanding the distribution of exoplanets in this region could offer important clues to how planets form.

Recently, OGLE and MOA scientists led by Przemek Mróz of the Warsaw University Observatory in Poland, have found planetary anomalies in two faint microlensing events designated OGLE-2013-BLG-0132 and OGLE-2013-BLG-1721.

"Both events showed clear deviations from the simple point-source point-lens model, caused by the presence of a second body with well-measured planet-to-host mass ratios of (5.15 ± 0.28) x 10-4 and (13.18 ± 0.72) x 10-4, respectively," the researchers wrote in the paper.

The newly discovered planets received designation OGLE-2013-BLG-0132b and OGLE-2013-BLG-1721b. Both planets likely belong to a group of sub-Jupiter-mass planets orbiting M dwarfs beyond the snow line distance.

According to the research, OGLE-2013-BLG-0132b has a mass of about 0.29 Jupiter masses and orbits its parent star at a distance of 3.6 AU. The planet's host is located about 12,700 light years away and has a mass of approximately 0.54 . With a mass of about 0.64 Jupiter masses, OGLE-2013-BLG-1721b is circling its host (0.46 solar masses) at a distance of 2.6 AU. This planetary system is located some 20,500 light years away from the Earth.

The researchers estimated the masses of the planets using the Bayesian analysis as both events were short and faint, which prevented them from measuring a reliable parallax signal.

"Both events were too short and too faint to measure a reliable parallax signal and hence the lens mass. We therefore used a Bayesian analysis to estimate masses of both planets," the paper reads.

The team noted that in order to uncover more properties of the two newly discovered planetary systems, follow-up high-resolution imaging observations should be conducted in the future. In particular, the Near InfRared Camera (NIRCam) on the James Webb Space Telescope (JWST) that will be launched into space in late 2018, could reveal important insights about these new Saturn-mass exoworlds.

Explore further: Massive exoplanet discovered using gravitational microlensing method

More information: OGLE-2013-BLG-0132Lb and OGLE-2013-BLG-1721Lb: Two Saturn-mass Planets Discovered around M-dwarfs, arXiv:1705.01058 [astro-ph.EP] arxiv.org/abs/1705.01058

Abstract
We present the discovery of two planetary systems consisting of a Saturn-mass planet orbiting an M-dwarf, which were detected in faint microlensing events OGLE-2013-BLG-0132 and OGLE-2013-BLG-1721. The planetary anomalies were covered with high cadence by OGLE and MOA photometric surveys. The light curve modeling indicates that planet-host mass ratios are (5.15±0.28)×10−4 and (13.18±0.72)×10−4, respectively. Both events were too short and too faint to measure a reliable parallax signal and hence the lens mass. We therefore used a Bayesian analysis to estimate masses of both planets: 0.29+0.16−0.13 MJup (OGLE-2013-BLG-0132Lb) and 0.64+0.35−0.31 MJup (OGLE-2013-BLG-1721Lb). Thanks to a high relative proper motion, OGLE-2013-BLG-0132 is a promising candidate for the high-resolution imaging follow-up. Both planets belong to an increasing sample of sub-Jupiter-mass planets orbiting M-dwarfs beyond the snow line.

Related Stories

Astronomers discover new gas giant exoplanet

December 14, 2016

(Phys.org)—Using the gravitational microlensing method, an international team of astronomers has recently detected a new gas giant exoplanet three times more massive than Jupiter. The newly discovered planet received designation ...

Gas giant planet discovered near the Milky Way's bulge

March 23, 2016

(Phys.org)—Using the gravitational microlensing technique, astronomers have recently detected what appears to be a Saturn-like planet residing near the Milky Way's bulge. The newly discovered exoplanet has a mass somewhere ...

'Iceball' planet discovered through microlensing

April 26, 2017

Scientists have discovered a new planet with the mass of Earth, orbiting its star at the same distance that we orbit our sun. The planet is likely far too cold to be habitable for life as we know it, however, because its ...

Impostor planet exposed by astronomers

November 9, 2016

(Phys.org)—Don't be fooled by its light curve exhibiting anomalies like those caused by planets—one microlensing event with a fancy name OGLE-2016-BLG-0733 is doing a really good job of mimicking an extrasolar world. ...

Recommended for you

Cosmonauts to examine mystery hole on ISS spacewalk

December 11, 2018

Russian cosmonauts were to carry out a spacewalk Tuesday to examine a mystery hole in a Soyuz spacecraft docked on the International Space Station that a Moscow official suggested could have been deliberate sabotage.

Calibrating cosmic mile markers

December 11, 2018

New work from the Carnegie Supernova Project provides the best-yet calibrations for using type Ia supernovae to measure cosmic distances, which has implications for our understanding of how fast the universe is expanding ...

Team finds evidence for carbon-rich surface on Ceres

December 10, 2018

A team led by Southwest Research Institute has concluded that the surface of dwarf planet Ceres is rich in organic matter. Data from NASA's Dawn spacecraft indicate that Ceres's surface may contain several times the concentration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.