Researchers develop a cost-effective way to improve optical gas sensors from a common compound

May 9, 2017, Concordia University
Credit: Concordia University

For many, zinc oxide conjures images of bright stripes down lifeguards' noses. But for researchers in Concordia's Faculty of Arts and Science, ZnO is an exciting compound with important optical and electrical properties.

For a study recently published in Materials and Design, Concordia physicists Amir Hassanpour and Pablo Bianucci joined chemists Nicoleta Bogdan and John Capobianco to take a closer look at this common material that can be used many different ways.

Through their research, they developed a cost-effective method for growing ZnO using an approach that might one day lead to new solar cell designs.

"Zinc oxide is the main ingredient in many creams that treat diaper rash and is commonly used as an ingredient in sunscreen," says Bianucci, assistant professor in Concordia's Department of Physics and the study's senior author.

"It's also inexpensive, bio-compatible and easy to make."

At the microscopic level, ZnO typically exists as a kind of forest of microscopic "trees" called nanorods that are useful for skin cream applications. But devices like can also make use of ZnO when the nanorods are arranged in specific patterns. Traditionally, those patterns have been difficult and expensive to produce. But the Concordia research team has developed a new method.

"It's easy to grow as a forest of randomly positioned nanorods, where each one has a diameter between 100 and 1000 times smaller than a human hair. But it's not easy to tell the nanorods where they are supposed to grow so that we can get the patterns necessary to create complex items like gas sensors," Bianucci explains.

"If we can grow the nanorods how and where we want them, we can create special structures called 'photonic crystals' that trap light. This would lead to the development of efficient ultraviolet lasers, or sensitive optical gas sensors that would change colour when a certain gas is present."

The research team has developed a process to make very small nanorods with a diameter of less than 100 nanometres which can be precisely separated, with approximately 500 nanometres between neighbouring rods.

"Our study proves that the material quality of these nanorods is the same as those grown in dense forests. What's more, we can reproduce this process on inexpensive materials like glass," says Hassanpour, the study's lead author and a PhD candidate in physics.

This shows that nanorods grown in pre-determined positions have the same properties as those that are grown randomly, allowing researchers to fabricate specific patterns for different applications. The process significantly reduces the fabrication cost of some advanced devices, such as small, affordable gas sensors that work more precisely than conventional ones.

Hassanpour hopes that this method could one day, with additional development, be used to make lasers that consume very little power, and perhaps even lead to new solar cell designs.

Explore further: Gold nanorods could be used to develop smaller portable mercury sensors

More information: Amir Hassanpour et al, Hydrothermal selective growth of low aspect ratio isolated ZnO nanorods, Materials & Design (2017). DOI: 10.1016/j.matdes.2017.01.089

Related Stories

Exposing ZnO nanorods to visible light removes microbes

May 12, 2011

The practical use of visible light and zinc oxide nanorods for destroying bacterial water contamination has been successfully demonstrated by researchers at the Asian Institute of Technology (AIT). Nanorods grown on glass ...

An improved method for coating gold nanorods

March 18, 2015

Researchers have fine-tuned a technique for coating gold nanorods with silica shells, allowing engineers to create large quantities of the nanorods and giving them more control over the thickness of the shell. Gold nanorods ...

Recommended for you

Paleontologists report world's biggest Tyrannosaurus rex

March 22, 2019

University of Alberta paleontologists have just reported the world's biggest Tyrannosaurus rex and the largest dinosaur skeleton ever found in Canada. The 13-metre-long T. rex, nicknamed "Scotty," lived in prehistoric Saskatchewan ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.