Environmental 'memories' passed on for 14 generations

April 20, 2017, Center for Genomic Regulation
C. elegans worm. Credit: Adam Klosin, CRG

Scientists at the Centre for Genomic Regulation (CRG) in Barcelona and the Josep Carreras Leukaemia Research Institute and The Institute for Health Science Research Germans Trias i Pujol (IGTP) in Badalona, Spain, have discovered that the impact of environmental change can be passed on in the genes of tiny nematode worms for at least 14 generations—the most that has ever been seen in animals. The findings will be published on Friday, April 21, in the journal Science.

Led by Dr Ben Lehner, group leader at the EMBL-CRG Systems Biology Unit and ICREA and AXA Professor, together with Dr Tanya Vavouri from the Josep Carreras Leukaemia Research Institute and the Institute for Health Science Research Germans Trias i Pujol (IGTP), the researchers noticed that the impact of can be passed on in the genes for many generations while studying C. elegans worms carrying a array - a long string of repeated copies of a gene for a that had been added into the worm genome using genetic engineering techniques.

If the worms were kept at 20 degrees Celsius, the array of transgenes was less active, creating only a small amount of fluorescent protein. But shifting the to a warmer climate of 25 degrees significantly increased the activity of the transgenes, making the animals glow brightly under ultraviolet light when viewed down a microscope.

When these worms were moved back to the cooler temperature, their transgenes were still highly active, suggesting they were somehow retaining the 'memory' of their exposure to warmth. Intriguingly, this high activity level was passed on to their offspring and onwards for 7 subsequent generations kept solely at 20 degrees, even though the original animals only experienced the higher temperature for a brief time. Keeping worms at 25 degrees for five generations led to the increased transgene activity being maintained for at least 14 generations once the animals were returned to cooler conditions.

Although this phenomenon has been seen in a range of animal species - including fruit flies, and mammals including humans - it tends to fade after a few generations. These findings, which will be published on Friday 21st April in the journal Science, represent the longest maintenance of transgenerational environmental 'memory' ever observed in animals to date.

"We discovered this phenomenon by chance, but it shows that it's certainly possible to transmit information about the environment down the generations," says Lehner. "We don't know exactly why this happens, but it might be a form of biological forward-planning," adds the first author of the study and CRG Alumnus, Adam Klosin. "Worms are very short-lived, so perhaps they are transmitting memories of past conditions to help their descendants predict what their environment might be like in the future," adds Vavouri.

Comparing the transgenes that were less active with those that had become activated by the higher temperature, Lehner and his team discovered crucial differences in a type of molecular 'tag' attached to the proteins packaging up the genes, known as histone methylation.

Transgenes in animals that had only ever been kept at 20 degrees had high levels of histone methylation, which is associated with silenced genes, while those that had been moved to 25 degrees had largely lost the methylation tags. Importantly, they still maintained this reduced histone methylation when moved back to the cooler temperature, suggesting that it is playing an important role in locking the memory into the transgenes.

The researchers also found that repetitive parts of the normal worm genome that look similar to transgene arrays also behave in the same way, suggesting that this is a widespread memory mechanism and not just restricted to artificially engineered genes.

Explore further: Study shows how epigenetic memory is passed across generations

More information: Klosin et al. Transgenerational transmission of environmental information in C. elegans. Science. April 21 2017. science.sciencemag.org/cgi/doi … 1126/science.aah6412

Related Stories

Worms in space: Exploring health effects of microgravity

February 10, 2015

Humans may inevitably explore other planets, moons, and asteroids within our solar system. And although life on Earth has adapted to our planet's gravitational field, this looming possibility begs the question: How will animals ...

Recommended for you

A world of parasites

May 25, 2018

Alex Betts, Craig MacLean and Kayla King from the Department of Zoology, shed light on their recent research published in Science, which addressed the impact that parasite communities have on evolutionary change and diversity.

Bumblebees confused by iridescent colors

May 25, 2018

Iridescence is a form of structural colour which uses regular repeating nanostructures to reflect light at slightly different angles, causing a colour-change effect.

A better B1 building block

May 25, 2018

Humans aren't the only earth-bound organisms that need to take their vitamins. Thiamine – commonly known as vitamin B1 – is vital to the survival of most every living thing on earth. But the average bacterium or plant ...

Plant symbioses—fragile partnerships

May 25, 2018

All plants require an adequate supply of inorganic nutrients, such as fixed nitrogen (usually in the form of ammonia or nitrate), for growth. A special group of flowering plants thus depends on close symbiotic relationships ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.