Device boosts interaction between light and motion

April 10, 2017, FAPESP
Light waves and mechanical waves at higher intensity levels are shown. Credit: Thiago Pedro Mayer Alegre

Optomechanical devices, which simultaneously confine light waves and mechanical waves to permit interaction between them, can be used to study fundamental questions in physics and to sense motion similarly to electromechanical accelerometers. In smartphones, these electronic components switch the touchscreen between portrait and landscape when they detect rotation by the user.

According to experts in the field, however, the use of optomechanical devices to study macroscopic quantum phenomena or to identify very subtle movements requires extremely high levels of interaction, or coupling, between and mechanical waves.

A group of researchers led by Thiago Pedro Mayer Alegre and Gustavo Silva Wiederhecker at the University of Campinas's Gleb Wataghin Physics Institute (IF-UNICAMP) in São Paulo State, Brazil, have developed an optomechanical device with a novel design that boosts the coupling between light waves and mechanical waves to higher levels than those reported for similar devices developed in the laboratory. Their work was supported by FAPESP.

The new optomechanical device and an experimental demonstration of its functioning are described in Optics Express.

"The way we designed the device allows the levels of interaction between light waves and mechanical waves to be increased," Alegre said.

"This means the device has practical applications and assists us in our basic research by helping us answer certain questions, such as what happens in the transition between the quantum microscopic world and the classical macroscopic world."

The device created by the researchers, based on a 24-micron silicon disk supported by a silicon dioxide central pedestal allowing the disk to vibrate, has a bullseye shape with concentric circular grooves. Thanks to this shape, light waves and mechanical waves can be confined within the device by separate mechanisms. The light waves are confined only at the edge of the disk by total internal reflection, an optical phenomenon whereby light within a medium such as water or glass is completely reflected from the surrounding surfaces (such as the air interface) back into the medium, provided the angle of incidence is greater than a certain limiting angle called the critical angle.

Light waves are therefore compressed near the disk edge and travel around the rings for a long time, whereas can propagate throughout the material. However, the concentric rings create frequency regions in which mechanical waves cannot propagate, and are confined to the outside edge of the disk, where they interact directly with the light waves.

"Confining light waves and mechanical waves to the disk edge enables us to boost their interaction, which is useful for exploring quantum phenomena in macroscopic objects," Alegre explained.

In devices developed by other research groups, the concentric circular grooves are used to confine light waves in the central region and not at the edge, as in the case of the device designed by the researchers at IF-UNICAMP.

Like optical vibrations, mechanical vibrations can be understood as waves, so Alegre's group had the idea of using the to confine mechanical waves at the edge of the device and make them interact more intensely with waves in the same region. "The point of developing the disk with this bullseye design was to prevent the mechanical mode from 'seeing' the central pedestal that supports the disk and allow the entire structure to vibrate, eliminating mechanical losses," he said.

The device is highly customizable, he added, and compatible with existing industrial fabrication processes, making it a solution for the enhancement of sensors that detect force and motion, for example. One of its potential applications is in telecommunications as an optical modulator, Alegre explained. Because the can sense and excite mechanical vibration, it could be used as an optical switch, controlling a laser beam that passes through it far more efficiently than the modulating technologies used today in optical telecommunications networks.

"It was fabricated according to current industrial processes, so any group in the world could reproduce it," he said.

Explore further: Researchers create practical and versatile microscopic optomechanical device

More information: "Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator" Optics Express (2017). DOI: 10.1364/OE.25.00508

Related Stories

First 'water-wave' laser created

November 29, 2016

Technion researchers have demonstrated, for the first time, that laser emissions can be created through the interaction of light and water waves. This "water-wave laser" could someday be used in tiny sensors that combine ...

Mechanical quanta see the light

January 19, 2016

Interconnecting different quantum systems is important for future quantum computing architectures, but has proven difficult to achieve. Researchers from the TU Delft and the University of Vienna have now realized a first ...

Governing mechanisms of waves in fluids

March 24, 2016

The first detection of gravitational waves, which took place a few weeks ago, has brought attention to a physical phenomenon that had long been theorized: waves carry information and can signal extraordinary (or extreme) ...

Recommended for you

Muons spin tales of undiscovered particles

April 20, 2018

Scientists at U.S. Department of Energy (DOE) national laboratories are collaborating to test a magnetic property of the muon. Their experiment could point to the existence of physics beyond our current understanding, including ...

Integrating optical components into existing chip designs

April 19, 2018

Two and a half years ago, a team of researchers led by groups at MIT, the University of California at Berkeley, and Boston University announced a milestone: the fabrication of a working microprocessor, built using only existing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.