A novel 'soft' magnetic material could enable faster computer memory

March 22, 2017, Agency for Science, Technology and Research (A*STAR), Singapore

Magnetic materials are a vital ingredient in the components that store information in computers and mobile phones. Now, A*STAR researchers have developed a material that could help these magnetic-based memory devices to store and retrieve data faster while using less power.

Memory devices work when a small is applied to the storage medium to align atomic-level magnets known as spins. This spin alignment, or magnetization, in one region of the magnetic material can represent one 'bit' of information, which can be 'read' back again using a magnet. Scientists are trying to improve the performance of magnetic memories by reducing both the energy required to change the magnetization and unwanted noise.

One approach is to use a magnetic material with a property known as negative magnetocrystalline anisotropy. This means that less energy is required to align the spins in one direction then another, and so the material is generally easier to magnetize and demagnetize. This low coercivity is useful because this so-called 'soft' magnetic material can guide a magnetic onto the storage layer, thus lowering the intensity of field that must be applied to alter the 'hard' material's magnetization.

Tiejun Zhou and co-workers from the A*STAR Data Storage Institute found a way to further reduce the coercivity of a soft material called cobalt iridium by adding rhodium.

The team created their magnetic material with a technique known as direct current magnetron sputtering. Cobalt, iridium and rhodium were simultaneously ejected from separate solid sources in a vacuum chamber and deposited on a silicon substrate. By changing the power supplied to each of the sources, the researchers could control the composition of the final material, increasing the amount of rhodium at the expense of iridium. Measurements of the magnetic properties of CoIr-Rh films demonstrated that the introduction of this rhodium reduced the coercivity and the damping constant by more than a half of that of unmodified cobalt iridium.

"When used in a device, such negative magnetocrystalline anisotropy enable higher frequency operation at lower driving current and the creation of a higher in-plane alternating-current magnetic field for effective assisted switching, and higher stability against stray fields and temperature fluctuations," explains Zhou. The team demonstrated this improved performance in a memory device called a spin torque oscillator.

The results show that CoIr-Rh could help to develop commercial low-energy magnetic storage. "By fine tuning the composition, we can continuously improve the properties of to meet the criteria required for industry-level applications," says Zhou.

Explore further: Better nanoimages 'spin' the path to improved magnetic memory

More information: H S Wong et al. Reduction of magnetic damping and isotropic coercivity and increase of saturation magnetization in Rh-incorporated CoIr system, Nanotechnology (2016). DOI: 10.1088/0957-4484/27/45/455705

Related Stories

Recommended for you

Quantum computers tackle big data with machine learning

October 15, 2018

Every two seconds, sensors measuring the United States' electrical grid collect 3 petabytes of data – the equivalent of 3 million gigabytes. Data analysis on that scale is a challenge when crucial information is stored ...

Researchers report innovative optical tissue imaging method

October 15, 2018

A UK-wide research team, led by the University of St Andrews, has developed an innovative new way to optically image through tissue, which could allow for a more detailed understanding and diagnosis of the early stages of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.