Nanoparticle-polymer composites boost holographic data prospects

March 10, 2017, University of Electro Communications
Nanoparticle-polymer composites boost holographic data prospects
Optical setup for coaxial holographic digital data page recording. Credit: University of Electro Communications

Holograms offer a means of increasing data storage density that may help to meet the demands of ever decreasing device sizes and increasing memory requirements. Kohta Nagaya, Eiji Hata and Yasuo Tomita at the University of Electro-Communications in Japan demonstrate that coaxial holographic digital data storage in a thiol-ene based nanoparticle-polymer composite can achieve competitive symbol error rates and signal-to-noise ratios.

Using changes in refractive index to optically record data, holograms record in three dimensions instead of being limited to the surface alone, thereby increasing the amount of data recorded. To diminish symbol error rates and increase signal-to-noise ratios the recording material must undergo large refractive index changes with a high recording sensitivity and be resilient to shrinkage during the process.

Inorganic nanoparticle-polymer composites are excellent candidates for meeting holographic data storage criteria, and the UEC researchers have already demonstrated holographic storage in nanoparticle-polymer composites by use of thiol and ene-monomers, 'so-called thiol-ene monomers'. By shifting the storage medium within a few tens of micron-size beam spot during the recording process holographic shift-multiplexing storage was achieved.

Now the UEC researchers have demonstrated co-axial holographic data storage in thiol-ene based nanoparticle-polymer composites. Coaxial data recording positions the reference beam around the signal beam and has been proposed as a means of increasing data density and transfer rates for a more competitive data storage technology.

The researchers used silica nanoparticles uniformly dispersed to secondary thiol and an allyl triazine triene monomer components. Optimum symbol error rates (less than 10-4) and signal-to-noise ratios (higher than 10) were achieved when silica nanoparticles were used at 25 vol.% concentrations and the composition of thiol-ene monomers was stoichiometric.

The researchers conclude, "These results show the usefulness of thiol-ene based nanoparticle-polymer composites as coaxial holographic media."

Explore further: Surface-patterned colloidal particles

More information: Kohta Nagaya et al. Readout fidelity of coaxial holographic digital data page recording in nanoparticle–(thiol–ene) polymer composites, Japanese Journal of Applied Physics (2016). DOI: 10.7567/JJAP.55.09SB03

Related Stories

Surface-patterned colloidal particles

September 21, 2016

(—A group of researchers from several institutions have attached thiol-terminated polymers to gold nanoparticles and created surface micelles by changing the solvent from one that is favorable for the polymer to ...

Quasi noise-free digital holography

December 29, 2016

Noise originating from the coherent nature of laser light is the scourge of digital holography, reducing the quality of holographic images below that of conventional photographs. Now, Pasquale Memmolo of ISASI-CNR and collaborators ...

Decreasing the mass of aircraft with polymer composites

February 9, 2017

Members of the Department of Chemistry of Lomonosov Moscow State University have created unique polymer matrices for polymer composites based on novel phthalonitrile monomers. The materials are stronger than metals, which ...

Graphene-based discs ensure safe storage

October 3, 2013

( —Swinburne University of Technology researchers have shown the potential of a new material for transforming secure optical information storage.

Recommended for you

Pedestrians keep a 75 cm comfort zone to prevent collisions

December 17, 2018

Pedestrians are constantly avoiding collisions with oncoming people. Meters in advance they unconsciously change their walkway to pass each other. Physicists at Eindhoven University of Technology in collaboration with American ...

Magic number colloidal clusters

December 14, 2018

Complexity in nature often results from self-assembly, and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nanoparticles ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.