Flashy first images arrive from NOAA's GOES-16 lightning mapper

March 6, 2017, NASA's Goddard Space Flight Center
One hour of GOES-16's Geostationary Lightning Mapper (GLM) lightning data from Feb. 14, when GLM acquired 1.8 million images of the Earth. It is displayed over GOES-16 ABI full disk Band 2 imagery. Brighter colors indicate more lightning energy was recorded; color bar units are the calculated kilowatt-hours of total optical emissions from lightning. The brightest storm system is located over the Gulf Coast of Texas, the same storm system in the accompanying video. This is preliminary, non-operational data. Credit: NOAA/NASA

Detecting and predicting lightning just got a lot easier. The first images from a new instrument onboard NOAA's GOES-16 satellite are giving NOAA National Weather Service forecasters richer information about lightning that will help them alert the public to dangerous weather.

The first detector in a , the Geostationary Lightning Mapper (GLM), is transmitting data never before available to . The mapper continually looks for in the Western Hemisphere, so forecasters know when a storm is forming, intensifying and becoming more dangerous. Rapid increases of lightning are a signal that a storm is strengthening quickly and could produce .

During heavy rain, GLM data will show when thunderstorms are stalled or if they are gathering strength. When combined with radar and other satellite data, GLM data may help forecasters anticipate severe and issue flood and flash flood warnings sooner. In dry areas, especially in the western United States, information from the instrument will help forecasters, and ultimately firefighters, identify areas prone to wildfires sparked by lightning.

Accurate tracking of lightning and thunderstorms over the oceans, too distant for land-based radar and sometimes difficult to see with satellites, will support safe navigation for aviators and mariners.

The new mapper also detects in-cloud lightning, which often occurs five to 10 minutes or more before potentially deadly cloud-to-ground strikes. This means more precious time for forecasters to alert those involved in outdoor activities of the developing threat.

NASA successfully launched GOES-R at 6:42 p.m. EST on November 19, 2016 from Cape Canaveral Air Force Station in Florida and it was renamed GOES-16 when it achieved orbit. GOES-16 is now observing the planet from an equatorial view approximately 22,300 miles above the surface of the Earth.

NOAA's satellites are the backbone of its life-saving weather forecasts. GOES-16 will build upon and extend the more than 40-year legacy of satellite observations from NOAA that the American public has come to rely upon.

Learn more about GOES-16 and all its exciting possibilities for weather forecasting improvements by visiting the GOES-16 website.

For more information about GOES-16, visit: http://www.goes-r.gov/ or http://www.nasa.gov/goes

Explore further: GOES-R heads to orbit, will improve weather forecasting

Related Stories

GOES-R heads to orbit, will improve weather forecasting

December 6, 2016

GOES-R, the first of NOAA's highly advanced geostationary weather satellites, lifted off from Cape Canaveral, Florida, at 6:42 p.m. EST today. The satellite will boost the nation's weather observation network and NOAA's prediction ...

Six reasons why NOAA's GOES-R satellite matters

November 17, 2016

NOAA's GOES-R weather satellite will soon be launched into space— becoming our nation's most advanced geostationary satellite to date. So what does that mean for you? Here are six reasons to be excited about GOES-R!

Recommended for you

When the river runs high

June 15, 2018

A massive world-wide study of dry riverbeds has found they're contributing more carbon emissions than previously thought, and this could help scientists better understand how to fight climate change.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.