New type of nanosensor detects DNA building blocks

February 15, 2017, Uppsala University
New type of nanosensor detects DNA building blocks
A molecule’s dipole moment affecting the electrical potential of an atomic chain and thus altering the electrical current in the material. Credit: Ralph Scheicher

Researchers at Uppsala University and in Brazil have developed a new type of nanosensor that can detect single molecules. The nanosensor, comprising a combination of two different materials, has been used to identify the different building blocks in DNA.

What is really groundbreaking about this study is that it has succeeded in combining graphene, which is electrically conductive, and , which is insulating, in the same two-dimensional material. Previously, these two substances have only been used separately in an attempt to detect molecules.

The detection of individual molecules is of great importance in medicine and health care, but currently available methods are generally too complicated and expensive to be used widely.

The study has applied the nanosensor to detect the four naturally occurring nucleotides, which are the of DNA, and thus discovered a new quick and inexpensive way to sequence DNA by measuring an electric current.

In computer simulations, a little hole, called a nanopore, was created at the interface between the two substances, and a small chain of electrically conductive material thus formed between the nanopore and the insulating boron nitride. When molecules move through the nanopore, the electric potential of the chain is modulated and the conductivity of the material is therefore affected. By measuring the electric current in the material, the molecules can be identified through their characteristic dipole moment.

The study also included hydrogen fluoride, a small molecule with a large electric , which is an ideal model system to get a better understanding of how the nanosensor can detect the larger and more complex molecules.

"Computer simulations were carried out in a vacuum, and the were fixed relative to the carbon chain and nanopore. In future studies, we want to examine the dynamic aspects of the system. It will be exciting, for example, to see how the sensors react to water", says Ralph Scheicher, Assistant Professor of Materials Theory at the Department of Physics and Astronomy.

Explore further: Single-molecule graphene switches bring minute electronic devices a step closer

More information: Fábio A. L. de Souza et al. Electrical detection of nucleotides via nanopores in a hybrid graphene/h-BN sheet, Nanoscale (2017). DOI: 10.1039/C6NR07154F

Related Stories

DNA 'cage' could improve nanopore technology

February 10, 2015

Despite having a diameter tens of thousands of times smaller than a human hair, nanopores could be the next big thing in DNA sequencing. By zipping DNA molecules through these tiny holes, scientists hope to one day read off ...

Improved decoding of DNA for custom medical treatments

November 8, 2013

One day, doctors will be able to create custom medical treatment plans based on a patient's DNA, pinpointing the root of a patient's illness and making sure treatment will not cause a fatal allergic reaction. Thanks to Technion ...

Recommended for you

Atomic-scale ping-pong

June 20, 2018

New experiments by researchers at the National Graphene Institute at the University of Manchester have shed more light on the gas flow through tiny, angstrom-sized channels with atomically flat walls.

Chameleon-inspired nanolaser changes colors

June 20, 2018

As a chameleon shifts its color from turquoise to pink to orange to green, nature's design principles are at play. Complex nano-mechanics are quietly and effortlessly working to camouflage the lizard's skin to match its environment.

Method could help boost large scale production of graphene

June 19, 2018

The measure by which any conductor is judged is how easily, and speedily, electrons can move through it. On this point, graphene is one of the most promising materials for a breathtaking array of applications. However, its ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.