Research shows driving factors behind changes between local and global carbon cycles

January 17, 2017, University of Exeter
Clouds over Australia are shown. Credit: NASA

Pioneering new research has provided a fascinating new insight in the quest to determine whether temperature or water availability is the most influential factor in determining the success of global, land-based carbon sinks.

The research, carried out by an international team of climate scientists including Professors Pierre Friedlingstein and Stephen Sitch from the University of Exeter, has revealed new clues on how land are regulated on both local and global scales.

The groundbreaking study revealed that, globally, the year-to-year variability of the land - the exchange of carbon that takes place between the land biosphere and the atmosphere - responds most significantly to changes in temperature. On a more localized level, however, the study suggests that water availability is the dominant factor in determining how successfully carbon sinks are performing.

Professor Friedlingstein, Chair of Mathematical Modelling of Climate Systems at the University of Exeter said: "The strong response of the land carbon cycle to climate variability such as El Ni?ño events has always been on our radar as a test-bed for the carbon cycle response to future climate change. Our study highlights the importance of changes in soil water availability to plants as a key element. It's not just about global temperature".

At present, land-based ecosystems absorb around one quarter of all man-made carbon dioxide emitted into the atmosphere.

Current climate change is characterized by rising atmospheric carbon dioxide (CO2) concentrations and associated warming. However, the annual growth rate of CO2, which has been measured in the atmosphere for several decades, varies largely from year to year.

These variations originate primarily from fluctuations in carbon uptake by land ecosystems driven by the natural variability of the climate system, rather than by oceans or from changes in the levels of man-made carbon emissions.

Discussions on whether temperature or water availability is driving the strength of these variations in the land carbon sink have been highly contested with these year-to-year changes of the carbon balance seemingly related to global or tropical temperatures. However, other studies find that the largest carbon balance variability is seen in wide-spread water-limited regions.

In this latest study, the team of researchers applied empirical and process-based models, to analyze local areas, as well as the global surface, and the effect of temperature and water availability variations on carbon exchange between the atmosphere and the terrestrial biosphere.

The team found that, locally, water availability provides the most dominant cause of the year-to-year variability of both CO2 uptake in plants by photosynthesis, and CO2 release from plants and microbes respiration. However, on a global scale variability is mostly driven by temperature fluctuations, the research showed.

"What looks quite paradox at a first view, can be illustrated by looking close at the different spatial and temporal variations of the biosphere-atmosphere interactions", explains Dr. Martin Jung, lead author of the Nature publication. "There are two compensatory effects of water availability: first, at the local scale, temporal water-driven photosynthesis and respiration variations compensate each other."

"In addition, on a global scale, anomalies of also compensate in space" adds Jung. "If it is very dry in one part of the world, it is often very wet in another region, thus globally water-controlled anomalies in net carbon exchange outweigh in space."

Besides shedding light on previously contradictory findings, the outcome also points to the need for a research focus on how climate variables change while scanning across different scales and under global warming conditions.

"The simple relationship between the temperature and the global land carbon sink should be treated with caution, and not be used to infer ecological processes and long-term predictions" adds Dr. Reichstein, head of the Department. With continuous global warming, the scientists expect the changing water cycle to become the critical factor for the variability in the global land sink.

'Compensatory water effects link yearly global land CO2 sink changes to temperature' is published in Nature.

Explore further: Future increase in plant photosynthesis revealed by seasonal carbon dioxide cycle

More information: Martin Jung et al, Compensatory water effects link yearly global land CO2 sink changes to temperature, Nature (2017). DOI: 10.1038/nature20780

Related Stories

Recommended for you

A damming trend

December 14, 2018

Hundreds of dams are being proposed for Mekong River basin in Southeast Asia. The negative social and environmental consequences—affecting everything from food security to the environment—greatly outweigh the positive ...

Data from Kilauea suggests the eruption was unprecedented

December 14, 2018

A very large team of researchers from multiple institutions in the U.S. has concluded that the Kilauea volcanic eruption that occurred over this past summer represented an unprecedented volcanic event. In their paper published ...

The long dry: global water supplies are shrinking

December 13, 2018

A global study has found a paradox: our water supplies are shrinking at the same time as climate change is generating more intense rain. And the culprit is the drying of soils, say researchers, pointing to a world where drought-like ...

Death near the shoreline, not life on land

December 13, 2018

Our understanding of when the very first animals started living on land is helped by identifying trace fossils—the tracks and trails left by ancient animals—in sedimentary rocks that were deposited on the continents.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.