New theory on liquid crystals with high symmetry

November 8, 2016 by Erik Arends
The figure on the left displays the ordered state. In the graph this is represented in purple. With low symmetry (left in graph) the ordered state abides even at high temperatures, but with high symmetry (right in graph) this takes extreme cold. Credit: Leiden Institute of Physics

LCD screens use liquid crystals, which have a high degree of order, even though they form a fluid. A new theory detailed in Physical Review X maps out the interplay between order, temperature and symmetry.

Chances are that you're staring at a collection of liquid crystals right now. Most screens nowadays are LCDs, meaning that they have a number of liquid crystals in every pixel. The computer determines whether each pixel blocks light or lets it pass by sending small currents through the liquid crystals. That way, the correct color filters give the pixel the appropriate color.

Temperature

LCD technology needs a certain amount of order. If the screen gets too hot, the liquid crystals will convert into a useless, chaotic, ordinary fluid. At , they also form a fluid, but they have the necessary degree of orientation order. Leiden theoretical physicist Prof. Jan Zaanen and his group now formulated a theory on the interplay between , order and temperature.

Symmetry

The more symmetric a is, the colder it needs to be to contain sufficient order. After all, it is harder to notice a crooked part in a composition with symmetry in many directions. In the figure, we see the ordered state on the left—displayed in purple in the graph. With low symmetry (left in graph) it abides even at high temperatures, but with high symmetry (right in graph) this takes extreme cold.

Explore further: Towards better metallic glasses

More information: Ke Liu et al. Generalized Liquid Crystals: Giant Fluctuations and the Vestigial Chiral Order of,, andMatter, Physical Review X (2016). DOI: 10.1103/PhysRevX.6.041025

Related Stories

Towards better metallic glasses

October 25, 2016

Researchers from the University of Bristol have used state-of-the-art computer simulation to test a theory from the 1950s that when atoms organise themselves into 3D pentagons they supress crystallisation.

Time crystals might exist after all (Update)

September 9, 2016

(Phys.org)—Are time crystals just a mathematical curiosity, or could they actually physically exist? Physicists have been debating this question since 2012, when Nobel laureate Frank Wilczek first proposed the idea of time ...

The maths behind 'impossible' never-repeating patterns

August 15, 2016

Remember the graph paper you used at school, the kind that's covered with tiny squares? It's the perfect illustration of what mathematicians call a "periodic tiling of space", with shapes covering an entire area with no overlap ...

New research ensures car LCDs work in extreme cold, heat

March 25, 2016

One of UCF's most prolific inventors has solved a stubborn problem: How to keep the electronic displays in your car working, whether you're driving in the frigid depths of winter or under the broiling desert sun.

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.