What happens to a pathogenic fungus grown in space?

October 26, 2016, American Society for Microbiology

A new study, published this week in mSphere, provides evidence that Aspergillus fumigatus, a significant opportunistic fungal threat to human health, grows and behaves similarly on the International Space Station compared with earth. The study provides important information that can help with space exploration. As the durations of manned space missions increase, it is vitally important to understand the long-term consequences of microbial exposure on human health in closed human habitats.

One mission of the Microbial Observatory Experiments on the International Space Station is to examine the traits and diversity of fungal isolates, to gain a better understanding of how fungi may adapt to microgravity environments and how this may affect interactions with humans in closed habitats. In the new study, led by Benjamin Knox, a microbiology graduate student at University of Wisconsin-Madison, scientists compared two isolates of A. fumigatus that were isolated from the International Space Station to reference isolates from earth.

Through in vitro, in vivo, and genetic analyses, the researchers discovered that the isolates recovered from the space station exhibited normal in vitro growth and chemical stress tolerance, and there were no unexpected genetic differences. The strains in space were slightly more lethal in a vertebrate model of invasive disease, but there was nothing to suggest that as a consequence of spending time in space, there were any significant changes to the fungus.

"While we observed virulence differences, we speculate that it is completely within the variation that one would observe with terrestrial isolates," said Mr. Knox. "There is an emerging body of literature showing a terrific phenotypic variation in A. fumigatus."

Since A. fumigatus is the most significant airborne opportunistic mold pathogen of humans, it is likely to be an issue on space vessels. "For people wanting to draft policy, either sampling or cleaning regimes aboard these space vessels, the study shows that if a fungus is identified as A. fumigatus, any and all isolates represent potential pathogens and should be treated as such," said Mr. Knox.

Explore further: One billion base pairs sequenced on the space station

Related Stories

One billion base pairs sequenced on the space station

September 22, 2016

Aboard the International Space Station, NASA astronaut Kate Rubins checks a sample for air bubbles prior to loading it in the biomolecule sequencer. When Rubins' expedition began, zero base pairs of DNA had been sequenced ...

How clean is the International Space Station?

October 26, 2015

State-of-the-art molecular analysis of dust samples from the International Space Station (ISS) has been employed to reveal new information about some of the potential bacterial agents present in the astronauts' space environment. ...

Recommended for you

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.