Low energy electric field found suitable for quick magnetic recording

October 4, 2016 by Radboud University, Radboud University
A terahertz wave excites electronic transitions between quantum orbits thereby driving the elementary magnets to wobble. Credit: Radboud University

A novel, highly energy efficient and ultrafast magnetization control scheme is successfully demonstrated by international team of scientists from the Netherlands, Germany, and Russia, as Nature Photonics publishes on 3 October 2016. With low-energy terahertz photons the team succeeded to make a magnet wobble in a trillionth of a second.

"Our finding addresses the long-term technological ambition of a direct, high-speed manipulation of magnetic data bits by an electric field, which is achieved at in our experiment" says Dr. Rostislav Mikhaylovskiy, the leader of the project at Radboud University in the Netherlands.

The researchers generated very strong pulses of electric field, which cycle within 1 picosecond, i.e. one trillionth of a second. The corresponding frequency is called terahertz which is one trillion of a Hertz. The terahertz electric field is so strong that it can induce a voltage of a million of Volts in a magnet. Thereby it perturbs the orbital motion of the electrons and deflects the direction of the magnetic anisotropy axis. Importantly, this process happens so fast that the magnetization cannot follow this new orientation. Instead, the magnetization starts to wobble around. The amplitude of the magnetization oscillations scales nonlinearly with the driving electric field.

Electric field control of magnetism

"The first terahertz field induced nonlinearity in the amplitude of magnetization oscillations marks a milestone of photonics on its own," adds Professor Rupert Huber, who led the study at the University of Regensburg.

Dr. Mikhaylovskiy explains: "Conventional wisdom has relied mainly on the magnetic terahertz fields which are relatively weak. Ultrafast magnetic recording requires terahertz magnetic fields with amplitudes of dozens of Tesla that is well beyond the current technology. We had a different idea – to use the much stronger for control of magnetic anisotropy. Thanks to the nonlinear scaling of the discovered effect, yet-predicted field thresholds for terahertz magnetic switching may be reduced by an order of magnitude."

The work builds on the experiments at Radboud University to switch magnets using light. Electrical switching is equally fast, but much more energy efficient, Mikhaylovskiy explains. "Here we use low-energy terahertz photons with their energies equal to that of spin and orbital excitations underlying magnetism. To date the light manipulation relied on the use of visible photons with energies of one electronvolt. That is more than a hundred times larger than the intrinsic energy scale of magnetism, which measure one to ten millielectronvolt.

Applicable in recording devices

He believes that the finding will be applicable in recording devices in the foreseeable future, using high-frequency transistor amplifiers in combination with tailor-cut near-field antennas. "Currently, we are working on attaining higher terahertz fields sufficient for the magnetization reversal using terahertz antennas. Another next step is to perform systematic studies of the ultrafast control of the spin-orbit interaction and the in a broad spectral range, to compare the efficiencies of the pumping in the far-, mid-infrared and visible ranges and thus to identify the most efficient, least dissipative, as well as the fastest approach for the manipulation of spins.

The novel finding opens a new research line at Radboud University. The Nijmegen FELIX facility with its in ideally suit for further investigation of nonlinear control of magnetism. The wavelength of the FELIX-laser is similar to those used in the study. In order to identify excitations allowing even faster and energy efficient switching of magnetic bits, the wavelength of the free electron lasers can be tuned across a very broad range.

Explore further: 'Electromagnon' effect couples electricity and magnetism in materials

More information: S. Baierl et al. Nonlinear spin control by terahertz-driven anisotropy fields, Nature Photonics (2016). DOI: 10.1038/nphoton.2016.181

Related Stories

Organic crystals put laser focus on magnetism

July 27, 2012

(Phys.org) -- In the first successful experiment of its type at SLAC's Linac Coherent Light Source, scientists used terahertz frequencies of light to change the magnetic state of a sample and then measured those changes with ...

Magnetisation controlled at picosecond intervals

August 12, 2013

A terahertz laser developed at the Paul Scherrer Institute makes it possible to control a material's magnetisation at a timescale of picoseconds. In their experiment, the researchers shone extremely short light pulses from ...

Metamaterials shine bright as new terahertz source

April 23, 2015

Metamaterials allow design and use of light-matter interactions at a fundamental level. An efficient terahertz emission from two-dimensional arrays of gold split-ring resonator metamaterials was discovered as a result of ...

Terahertz radiation: A useful source for food safety

June 17, 2016

An effective and less expensive tool for the inspection of food and drugs could soon be a reality. Scientists from the Fritz Haber Institute of the Max Planck Society in Berlin have been working with national and international ...

Recommended for you

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.