China's quantum satellite could make data breaches a thing of the past

October 12, 2016 by Robert Young, The Conversation
Credit: Shutterstock

China recently launched a satellite into orbit with a unique feature: it has the ability to send information securely, not with mathematical encryption but by using the fundamental laws of physics. China will be the first country to achieve this feat, and it marks a milestone in the development of quantum technologies.

The next revolution in technology promises to embrace of physics to enable devices to perform operations that are beyond the bounds of current electronics. The potential of quantum computers to tackle some of the most complex mathematical problems is very exciting. But information security provided by quantum communications could be just as important.

Our society relies heavily on digital communications. In the last three years, we sent more information through the internet than had been communicated in the whole of human history before this period. A large proportion of this data is sensitive and we often want to keep it from prying eyes. But how can we trust communications over the internet when it relies on data travelling down chains of potentially unknown computers? Taking a place on one of these chains and snooping on the data as it passes by seems all too easy.

The current solution to this communications challenge is to use complex mathematics in a series of algorithms known as public key cryptography. But the increasing power of computers and ingenuity of hackers is opening up more and more cracks in this mathematical armour. An ideal solution to this problem would provide provable , guaranteeing the safety of our personal information. This is where quantum physics steps in.

Light circuits. Credit: Jonathan Roberts/Lancaster University, Author provided
Laser technology

The technology on board China's new satellite is simple in design and almost magical in operation. A special crystal divides a laser into two beams that are then directed to independent receiving stations on Earth. These beams share a property of quantum mechanics known as entanglement, which links them together even when they are far apart. Actions performed on one beam will also affect the other beam.

The trick to secure communications lies in this odd relationship between the two beams. The link is used to send random data from one receiving station to the other. This data can be collected and used, essentially as a complex password, to encrypt data sent over a public channel such as the internet. This method of communications was invented by a famous quantum physicist, Artur Ekert. Crucially, it is proven to be secure against eavesdropping and hacking. Quantum physics cannot be cheated, tricked or reverse engineered, unlike the complex mathematics of conventional cryptography.

China's new satellite is an important step towards truly secure communications, as it allows quantum data to be sent over extreme distances between any two locations. At the moment, with just one satellite, the technology's capabilities are limited, but it is easy to see how it will scale up as more satellites are launched and performance improves.

The next important piece to this puzzle lies at the opposite end of the length scale. The majority of communications flow along chains, and the strength of a chain is only as good as its weakest link. For practical quantum communications we need devices integrated into our computers and smartphones that exchange data in a similar way to the quantum satellite. These devices are thankfully just around the corner. In a few years we may look back on digital eavesdropping and massive information breaches from databases as a problem buried in the past.

Explore further: China's launch of quantum satellite major step in space race

Related Stories

Quantum computing advances with control of entanglement

September 27, 2016

When the quantum computer was imagined 30 years ago, it was revered for its potential to quickly and accurately complete practical tasks often considered impossible for mere humans and for conventional computers. But, there ...

Quantum cryptography for mobile phones

April 3, 2014

Secure mobile communications underpin our society and through mobile phones, tablets and laptops we have become online consumers. The security of mobile transactions is obscure to most people but is absolutely essential if ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ENetArch
not rated yet Oct 16, 2016
So, this type of information transmission relies on 3rd party to create entwined pairs that are used by two locations to transmit data between them via quantum tunneling. However, this method is susceptible to middle of the man of the attack. Basically, a 3rd party creates two sets of entwined pairs and transmits one end of each pair to the two locations. As the sender uses one pair, the information is transferred to the 3rd party, which reads the transmission, then either chooses to re-transmit the data, or transmit misinformation to the receiver.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.