Bacteria-based water treatment systems may help prevent the spread of antibiotic resistance

October 7, 2016, King Abdullah University of Science and Technology
Bacteria-based water treatment systems may help prevent the spread of antibiotic resistance
Moustapha Harb collects a water sample from the anaerobic membrane bioreactor. Credit: KAUST

Many wastewater treatment facilities rely on membrane bioreactors (MBRs) that use bacterial communities to consume and break down contaminants that make the water unsafe for reuse.

Peiying Hong and colleagues from the Water Desalination and Reuse Center at King Abdullah University of Science and Technology (KAUST), Saudi Arabia, examined how specific pollutants in water affect these bacteria and identified a potential edge for one particular class of membrane bioreactors.

The microbes within these bioreactors can be oxygen-consuming aerobic bacteria or that do not require oxygen. Hong noted that the anaerobic membrane bioreactors are known to have significant advantages, including very stable bacterial populations that are more efficient at processing pollutants. They are also more cost-effective.

Before Hong's study, little was known about how the contents of wastewater, which include household chemicals, antibiotics and pharmaceuticals, affect the integrity of these different communities.

"We examined the effects of these compounds on the microbial community structures of the two MBR systems, their gene expression and the presence of antibiotic-resistance genes," said Hong.

Her team tested two miniature membrane bioreactors with simulated wastewater spiked with defined amounts of common chemical pollutants. Both the anaerobic and aerobic communities changed over the course of exposure, with certain species becoming more or less abundant in each bioreactor.

The researchers also observed population-level changes in the expression of genes that enable bacteria to break down biological waste, although both bioreactors remained consistent over time.

A potential concern over membrane bioreactors is that steady exposure to antibiotics in wastewater will promote the development of drug-resistance genes, which can in turn make their way into the environment. However, Hong's team saw a clear advantage for the anaerobic system.

"There were significantly lower antibiotic resistance gene levels compared to the aerobic system, even at similar antibiotic concentrations," she said.

These findings provide yet another strong argument for using anaerobic membrane bioreactors, and Hong is now investigating other potential benefits of the technology.

Some of her group's priorities include investigating whether anaerobic systems have an advantage in eliminating microbes from wastewater and producing a more in-depth analysis of how individual pollutant compounds influence bioreactor behavior.

"We hope to show that microbial communities in anaerobic systems are robust enough to adjust to high concentrations of organic micropollutants while achieving good water treatment efficacy," Hong said.

Explore further: Metagenomic analyses lend insights into how microbes break down wastewater contaminants

More information: Moustapha Harb et al. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression, Bioresource Technology (2016). DOI: 10.1016/j.biortech.2016.07.036

Related Stories

Wastewater to irrigate, fertilize and generate energy

September 2, 2015

To meet the requirements of Asian cities, researchers are adapting an idea they have already applied in Germany for comprehensive water management: They are developing a concept for reducing water use, treating wastewater ...

Recommended for you

Termite queen, king recognition pheromone identified

March 19, 2018

Researchers at North Carolina State University have for the first time identified a specific chemical used by the higher termite castes—the queens and the kings—to communicate their royal status with worker termites. ...

Making intricate images with bacterial communities

March 19, 2018

Working with light and genetically engineered bacteria, researchers from Stanford University are able to shape the growth of bacterial communities. From polka dots to stripes to circuits, they can render intricate designs ...

New life form answers question about evolution of cells

March 19, 2018

Bacteria and Archaea are two of the three domains of life. Both must have evolved from the putative last universal common ancestor (LUCA). One hypothesis is that this happened because the cell membrane in LUCA was an unstable ...

Research signals arrival of a complete human genome

March 19, 2018

It's been nearly two decades since a UC Santa Cruz research team announced that they had assembled and posted the first human genome sequence on the internet. Despite the passage of time, enormous gaps remain in our genomic ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.