Scientists discover how 'super enzyme' speeds up DNA repair

September 5, 2016, Medical Research Council
Scientists discover how 'super enzyme' speeds up DNA repair
Credit: Medical Research Council

Scientists from the University of Sussex have discovered how an enzyme, known as PARP3, helps to accelerate the repair of DNA.

In the body, mutations can arise from DNA damage that is not repaired properly, leading to disease, including cancer and neurodegenerative disease. New research funded by the MRC and Cancer Research UK, led by the laboratories of Professor Keith Caldecott and Professor Laurence Pearl at the University of Sussex's Genome Damage and Stability Centre, has identified how the PARP3, short for poly(ADP-ribose) polymerase 3, recognises and signals the presence of broken DNA strands.

Research has shown that the PARP3 enzyme is involved in the DNA repair process and helps to maintain the integrity of the genetic code, but until now the precise DNA repair activation mechanism triggered by the enzyme was unclear.

Using multi-disciplinary expertise, Sussex scientists have identified the specific steps involved in activating the DNA repair process. When the PARP3 enzyme locates a specific site of DNA damage, it 'marks' the damaged DNA with a molecular signal.

This signal is created via a chemical change, involving the addition of a molecule called 'ADP-ribose' to the DNA. The DNA is packaged up in a complex called 'chromatin' which contains proteins; the team found that the PARP3 enzyme adds the 'ADP-ribose' molecule to one of these proteins – 'histone H2B'.

By marking the precise site of damage the enzyme flags the problem up to specialised DNA repair enzymes that will move in to repair the damage, protecting the cell from potentially dangerous DNA breaks.

The researchers believe this is a vital step towards understanding how DNA breaks are detected, signalled, and repaired, which could in the future enable scientists to create drugs which can better target certain cancers.

PARP3 is one of a superfamily of enzymes that are targeted by PARP inhibitor drugs, a new class drugs used to treat hereditary cancer, including ovarian and breast cancer. Knowledge of how the PARP3 enzyme activates DNA repair will also contribute to improving the understanding, and targeting, of PARP inhibitor drugs.

The research, which took place over four years, also involved nuclear magnetic resonance expertise in Professor Steve Matthews' group at Imperial College, London, proteomics in the lab of Dr Steve Sweet in Sussex and chromatin biology in the lab of Dr Alan Thorne at the University of Portsmouth.

Professor Keith Caldecott, who led the study, said: "This discovery highlights the value of multi-disciplinary collaborations, combining molecular and cellular biology with biochemistry and structural biology. As a result of working together, we have been able to identify how PARP3 recognises and flags the presence of broken DNA.

"This will be important for our understanding of how cells protect themselves from potentially dangerous DNA breaks. It will also help to provide insight into the mechanisms of action of a new class of PARP inhibitory anti-cancer drugs."

Explore further: Cancer research unlocks 30-year genetic puzzle

More information: Gabrielle J. Grundy et al. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2BGlu2, Nature Communications (2016). DOI: 10.1038/ncomms12404

Related Stories

Cancer research unlocks 30-year genetic puzzle

June 12, 2012

(Medical Xpress) -- Scientists at the University of Sussex have solved a 30-year genetic puzzle that could help enhance treatment for certain types of “inherited” cancers.

The keys to a major process in DNA repair

August 4, 2016

Researchers from the Institut Jacques Monod (CNRS/University of Paris Diderot), the Institute of Biology of the Ecole Normale Supérieure (ENS/CNRS/Inserm), and the University of Bristol, have described for the first time ...

Study reveals new insight into DNA repair

August 3, 2015

DNA double-strand breaks (DSBs) are the worst possible form of genetic malfunction that can cause cancer and resistance to therapy. New information published this week reveals more about why this occurs and how these breaks ...

Gene switch may repair DNA and prevent cancer

February 11, 2016

A team of scientists in Japan has found that a DNA modification called 5hmC – thought to be involved in turning genes on and off – localizes at sites of DNA damage and repair. They also found that a family of recently ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Microbial communities demonstrate high turnover

January 19, 2018

When Mark Twain famously said "If you don't like the weather in New England, just wait a few minutes," he probably didn't anticipate MIT researchers would apply his remark to their microbial research. But a new study does ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 05, 2016
regeneration anyone?
Whydening Gyre
not rated yet Sep 05, 2016
Beware the unintended consequences...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.