Maize pests impacted by the climate

July 29, 2016, Institut de Recherche pour le Développement (IRD)
Maize pests impacted by the climate
Credit: IRD / B. Le Ru

In East Africa, the caterpillars of two butterflies, Busseola fusca and Chilo partellus , represent a major threat for maize, the main food crop in the region. As recently borne out by the work of IRD researchers and their partners in Kenya, their distribution varies with altitude. Busseola fusca prefers mountain sides, whereas Chilo partellus predominate at low altitude; a new study has revealed this phenomenon. Temperatures play a role in several ways, leading to the conclusion that the populations of these two types of pest will grow in the coming years.

Less sturdy plants at high altitude

Thanks to the marked steps of the East African mountains—genuine open-air laboratories— IRD scientists and their Kenyan partners from ICIPE, KEFRI and the University of Nairobi simulated the effects of climate change on crops. They recently revealed that the richness of silica of maize plants is lower at high altitude. This element, extracted from the soil, is essential for the rigidity of the leaves and stems of grass family crops such as maize, enabling them to defend against pests. However, at a low temperature, the plant does not absorb through the roots and incorporate silica as much. At , heavier rainfall is also a factor, meaning silica is leached and depleted from the soil.

Caterpillars impacted to varying degrees

In East Africa, two types of butterfly, Busseola fusca and Chilo partellus , pose a threat to the production of maize, the main food crop in the region. The first predominates at altitude, while the second proliferates in open country. As the researchers have recently shown, temperatures consequently significantly impact their source of alimentation. Consequently, maize that is richer in silica is more difficult to digest and can prevent caterpillars from feeding themselves during their young larval stage. However, the study shows that in this respect, the two species of pests are not identical. The development of Busseola fusca on silica-rich slows down, while Chilo partellus adapts very well, which explains their distribution based on altitude.

Orienting combat strategies

This spatial distribution may develop in the coming years within a context of . An increase in atmospheric temperatures at altitude could improve the assimilation of silicon by and thus fend off the Busseola fusca , for the benefit of the Chilo partellus , which would as a result extend its area of distribution upstream.

Anticipating the future growth of the populations of crop depletion pests is paramount for the food safety of the countries concerned. In particular, this research will make it possible to better orient the biological control strategies that must be implemented. For instance, each depletion pest corresponds to a species of parasitoid wasp.

Explore further: Crop roots enact austerity measures during drought to bank water

More information: P.-A. Calatayud et al. Can climate-driven change influence silicon assimilation by cereals and hence the distribution of lepidopteran stem borers in East Africa?, Agriculture, Ecosystems & Environment (2016). DOI: 10.1016/j.agee.2016.03.040

Related Stories

Transgenic maize is more susceptible to aphids

August 29, 2007

The environmental consequences of transgenic crops are the focus of numerous investigations, such as the one published in the journal PloS ONE, which was carried out by Cristina Faria and her colleagues, under the supervision ...

Subtropical Cornwall climate could mean exotic new crops

July 11, 2016

The subtropical weather in Cornwall means new exotic crops such as quinoa and Japanese persimmon are now more likely to succeed, according to a new technique developed by University of Exeter experts to monitor the climate.

Caterpillars attracted to plant SOS

July 1, 2013

Plants that emit an airborne distress signal in response to herbivory may actually attract more enemies, according to a new study published in the open-access journal Frontiers in Plant Science .

Recommended for you

Observation of quantized heating in quantum matter

February 19, 2019

Shaking a physical system typically heats it up, in the sense that the system continuously absorbs energy. When considering a circular shaking pattern, the amount of energy that is absorbed can potentially depend on the orientation ...

Sound waves let quantum systems 'talk' to one another

February 18, 2019

Researchers at the University of Chicago and Argonne National Laboratory have invented an innovative way for different types of quantum technology to "talk" to each other using sound. The study, published Feb. 11 in Nature ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.