Image: Martian Morse code

July 11, 2016, NASA
Credit: NASA/JPL/University of Arizona

This image of dark dunes on Mars was taken on Feb. 6, 2016, at 15:16 local Mars time by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. These dunes are influenced by local topography. The shape and orientation of dunes can usually tell us about wind direction, but in this image, the dune-forms are very complex, so it's difficult to know the wind direction.

However, a circular depression (probably an old and infilled impact crater) has limited the amount of sand available for dune formation and influenced local winds. As a result, the here form distinct dots and dashes.

The "dashes" are linear dunes formed by bi-directional winds, which are not traveling parallel to the dune. Instead, the combined effect of winds from two directions at right angles to the dunes, funnels material into a linear shape.

The smaller "dots" (called "barchanoid dunes") occur where there is some interruption to the process forming those linear dunes. This process is not well understood at present and is one motivation for HiRISE to image this area.

Explore further: Image: Frosted dunes on Mars

Related Stories

Image: Frosted dunes on Mars

June 8, 2016

Sand dunes cover much of this terrain, which has large boulders lying on flat areas between the dunes.

Mapping winds and dune evolution on the Red Planet

November 5, 2015

Three Irish scientists have discovered how winds shape sand dunes on Mars by using image data from the HiRISE camera on the Mars Reconnaissance Orbiter and then comparing patterns with wind models that were tested on dunes ...

Image: Martian sand dunes in spring

March 7, 2014

(Phys.org) —Mars' northern-most sand dunes are beginning to emerge from their winter cover of seasonal carbon dioxide (dry) ice. Dark, bare south-facing slopes are soaking up the warmth of the sun.

Orbiter views Mars surface fractures

October 8, 2015

The High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA's Mars Reconnaissance Orbiter often takes images of Martian sand dunes to study the mobile soils. These images provide information about erosion and ...

Image: Dark dune fields of proctor crater, Mars

November 29, 2010

The dark rippled dunes of Mars' Proctor Crater likely formed more recently than the lighter rock forms they appear to cover, and are thought to slowly shift in response to pervasive winds.

Recommended for you

Dwarf companion to EPIC 206011496 detected by astronomers

September 20, 2018

Using ESO's Very Large Telescope (VLT), European astronomers have uncovered the presence of an M-dwarf around the star EPIC 206011496. The newly found object is more than 60 percent less massive than our sun and is bounded ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.