Bose-Einstein condensates miscibility properties reveal surprises

June 27, 2016
Bose-Einstein condensates miscibility properties reveal surprises
(a) Schematic illustration of the system. (b) Experimental result. The time evolution of the condensates shows clear bouncing, which are seemingly incompatible with the property of static miscible BECs, in which the ground state is spatially overlapped BECs. Credit: University of Electro Communications

Bose-Einstein condensates (BECs) are macroscopic systems that have quantum behaviour, and are useful for exploring fundamental physics. Now researchers at the Gakushuin University and the University of Electro-Communications have studied how the miscibility of multicomponent BECs affects their behaviour, with surprising results.

Fundamental particles have a property associated with angular momentum described as spin. Force particles - photons, gluons, and so on - have integer spin values and are called bosons; matter particles - electrons, neutrons, protons, and so on - have half integer values of spin and are called fermions. In composites of several fermions, as in atoms and nuclei, the total spin can be integer values so they can behave as bosons. While identical fermions cannot occupy the same state, bosons can, and if cooled to sufficiently low temperatures they will all occupy the lowest possible energy state - a Bose-Einstein condensate.

The researchers studied a BEC of rubidium atoms exploiting the element's rich spin states. They created optical traps containing around 3 x 105 atoms in two different states, and applied magnetic-field gradient pulses to separate condensates with different spins. The miscibility of different components of a BEC is determined by the strength of interactions between and within the , which the researchers could tune to produce miscible and immiscible multicomponent BECs.

After removing the magnetic field they left the system to evolve before releasing from the trap and imaged the resulting condensate distribution. "The various counterintuitive effects such as mutual penetration in immiscible BECs, bouncing between miscible BECs, and domain formation in miscible BECs were observed," report the researchers. Numerical simulations of the system revealed further insights, showing that "the properties of penetration and bouncing can be tuned by slightly changing the atomic interaction strengths."

Explore further: Bose-Einstein condensate could be used to observe quantum mass acquisition

More information: Yujiro Eto et al. Bouncing motion and penetration dynamics in multicomponent Bose-Einstein condensates, Physical Review A (2016). DOI: 10.1103/PhysRevA.93.033615

Related Stories

Study finds magnetic material could host wily Weyl fermions

June 7, 2016

An elusive massless particle could exist in a magnetic crystal structure, revealed by neutron and X-ray research from a team of scientists led by the Department of Energy's Oak Ridge National Laboratory and the University ...

Game theory elucidates the collective behavior of bosons

April 28, 2015

Quantum particles behave in strange ways and are often difficult to study experimentally. Using mathematical methods drawn from game theory, LMU physicists have shown how bosons, which like to enter the same state, can form ...

Physicists predict new state of matter

June 17, 2014

A researcher with the Department of Electrodynamics of Complex Systems and Nanophotonics, Alexander Rozhkov, has presented theoretical calculations which indicate the possible existence of fermionic matter in apreviously ...

Recommended for you

Making ferromagnets stronger by adding non-magnetic elements

June 23, 2017

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.