New method developed for testing herbicide resistance in weeds

April 8, 2016, University of Illinois
Waterhemp in the greenhouse

Herbicide-resistant weeds are becoming increasingly common in agricultural landscapes. Existing methods for confirming herbicide resistance require knowledge of the genes responsible for target-site resistance, but this information is not always known. A new method, developed by University of Illinois researchers for waterhemp, can test for herbicide resistance without prior knowledge of the genes involved.

Ask any farmer, and you'll hear that weeds are a major headache. Even worse are weeds that have developed resistance to the herbicides designed to kill them. This is the case for waterhemp, a broadleaf weed commonly found in corn and soybean fields. Many populations of waterhemp and its aggressive cousin, Palmer amaranth, have become resistant to atrazine, mesotrione, and a number of other commonly used herbicides, sometimes leading to significant yield losses in corn and soy crops.

"If you continue to spray the same herbicide on plants, there is a chance that a very small number of them will survive and reproduce. Some of their offspring will be resistant to the herbicide. By using the same herbicide over generations, we are selecting for weeds that are resistant to that chemical," says University of Illinois postdoctoral researcher Rong Ma.

Plants use a variety of mechanisms to avoid the toxic effects of herbicides. The most common mechanism, known as target-site resistance, comes from a gene mutation that keeps the herbicide from attaching to the proteins it is designed to destroy. The presence of these mutations in waterhemp populations can be quickly tested genetically, if the site of the mutation is known in advance. 

Another mechanism is known as metabolic resistance. In this case, the plant uses common enzymes to detoxify the herbicide before it even reaches the protein it is meant to destroy.

"Humans also have these broad, detoxifying enzymes. They can help detoxify drugs or chemicals we consume," Rong explains.

The enzymes responsible for metabolic resistance aren't always known, although they generally fall into one or two broad classes, P450s or GSTs.

"The problem is that plants have hundreds of these P450s or GSTs and we haven't yet identified which are responsible for resistance to the particular herbicide," says U of I weed scientist Dean Riechers.

Since the genes for those enzymes are usually unknown, it is not possible to test for them using the traditional . Ma, along with a team of researchers at U of I led by Riechers, have developed a new technique that can accurately test for metabolic resistance without relying on knowledge of the specific gene(s) involved.

The new method involves exposing a single small leaf blade to a radioactively labeled herbicide and then determining how much of the herbicide is left after the leaf has a chance to metabolize it. The less herbicide remaining over time, the more resistant the plant is.

The study tested three populations of waterhemp and two herbicides, mesotrione (Callisto, an HPPD inhibitor) and primisulfuron-methyl (Beacon, an ALS inhibitor). Although different populations appeared to detoxify the two chemicals using different biochemical mechanisms, the new method worked for both.

"The method should work for additional herbicides and even different weeds or crops," Riechers says. "We tested a third herbicide using the method with excised soybean leaves, and it worked. And as long as the leaf or petiole can fit in the tube, it should work for almost any plant."

Although the new method does not pinpoint the exact genes responsible for enhanced herbicide metabolism in resistant populations, it does indicate the general class of genes and the mechanism involved. The next step for the research team is to identify specific genes and eventually develop markers for rapid testing using conventional genetic methods.

Riechers says that other universities and companies are already using the .

The article, "Measuring rates of metabolism in dicot with an excised leaf assay," is published in the Journal of Visualized Experiments. Joshua Skelton, also from U of I, was a co-author on the article with Ma and Riechers. Funding was provided by Syngenta Crop Protection.

Explore further: Which direction are herbicides heading?

More information: Rong Ma et al. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay, Journal of Visualized Experiments (2015). DOI: 10.3791/53236

Related Stories

Which direction are herbicides heading?

October 11, 2011

2,4-D is coming back. What many might consider a "dinosaur" may be the best solution for growers fighting weed resistance today, said Dean Riechers, University of Illinois associate professor of weed physiology.

Waterhemp rears its ugly head ... again

January 26, 2011

Waterhemp has done it again. University of Illinois researchers just published an article in Pest Management Science confirming that waterhemp is the first weed to evolve resistance to HPPD-inhibiting herbicides.

Resistance evolution in weeds puts 2,4-D under the microscope

August 24, 2012

(Phys.org)—Researchers are investigating why a broadleaf herbicide used successfully to control weeds in agriculture for the past 60 years is now no longer effective against the crop weed, wild radish, in the Western Australian ...

Recommended for you

Genome duplication drives evolution of species

September 25, 2018

Many wild and cultivated plants arise through the combination of two species. The genome of these so-called polyploid species often consists of a quadruple set of chromosomes—a double set for each parental species—and ...

Some female termites can reproduce without males

September 24, 2018

Populations of the termite species Glyptotermes nakajimai can form successful, reproducing colonies in absence of males, according to a study published in the open access journal BMC Biology.

Photosynthesis discovery could help next-gen biotechnologies

September 24, 2018

Researchers from The University of Queensland (UQ) and the University of Münster (WWU) have purified and visualized the 'Cyclic Electron Flow' (CEF) supercomplex, a critical part of the photosynthetic machinery in all plants, ...

How fruits got their eye-catching colors

September 24, 2018

Red plums. Green melons. Purple figs. Ripe fruits come in an array of greens, yellows, oranges, browns, reds and purples. Scientists say they have new evidence that plants owe their rainbow of fruit colors to the different ...

Custom circuits for living cells

September 24, 2018

A team of Caltech researchers has developed a biological toolkit of proteins that can be assembled together in different ways, like Legos, to program new behaviors in cells. As a proof-of-concept, they designed and constructed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.